\(\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^3\)

2/

a/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

1,\(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^3\) = \(2:\left(\dfrac{-1}{216}\right)\)=\(-432\)

2, \(a,2^6.5^6.5^4.4^4=10^6.20^4\)

\(b,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}\)

29 tháng 9 2018

((3\(^2\)))\(^2\) - ((-5\(^2\)))\(^2\) + ((-2\(^3\)))\(^2\)

= 81 - 625 + 64

= -544+ 64

= -480

2\(^4\) + 8[(-2)\(^2\) :\(\dfrac{1}{2}\)]\(^0\) - 2\(^{-2}\). 4 + (-2)\(^2\)

= 16+ 8.1 - \(\dfrac{1}{4}\). 4 + 4

= 16+ 8- 1+4

= 27

2\(^4\) + 3(\(\dfrac{1}{2}\))\(^0\) + 2\(^{-2}\).8 + [(-2)\(^3\). \(\dfrac{1}{2^4}\)].2 - \(\dfrac{1}{2}\)

= 16 + 3.1 +\(\dfrac{1}{4}\).8 + [(-8).\(\dfrac{1}{16}\)].2 -\(\dfrac{1}{2}\)

= 16 + 3+ 2 + \(\dfrac{-1}{2}\).2- \(\dfrac{1}{2}\)

= 21 + (-1)- \(\dfrac{1}{2}\)

= 20-\(\dfrac{1}{2}\) = \(\dfrac{40}{2}\) - \(\dfrac{1}{2}\)= \(\dfrac{39}{2}\)

\(\dfrac{15^{10}.5^{10}}{75^{10}}\) + \(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}\)

= \(\dfrac{\left(15.5\right)^{10}}{75^{10}}\) + \(\dfrac{\left(0,4.2\right)^5}{\left(0.4\right)^6}\)

= \(\dfrac{75^{10}}{75^{10}}\) + \(\dfrac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\)

= 1 + \(\dfrac{2^5}{0,4}\) = 1+ 80 = 81

\(\dfrac{2^{13}.9^4}{6^3.8^3}\)

= \(\dfrac{2^{13}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}\) = \(\dfrac{2^{13}.3^8}{2^3.3^3.2^9}\)

= \(\dfrac{2^4.3^5}{2^3}\) = 2.3\(^5\) = 486

19 tháng 6 2018

8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)

=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)

=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)

=7.(-7)

=-49

27 tháng 11 2022

a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)

\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)

\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)

\(=\dfrac{124}{15}\)

b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)

\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)

\(=-\dfrac{71}{375}\)

c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)

\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)

=1+2/5

=7/5

d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)

e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)

28 tháng 12 2017

Bài 5: GTNN chứ nhỉ?

Với mọi gt của \(x;y\in R\) ta có:

\(x^2+3\left|y-2\right|+1\ge1\)

Hay \(A\ge1\) với mọi gt của \(x;y\in R\)

Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy..................

Bài 6: GTLN chứ?

Với mọi giá trị của \(x\in R\) ta có:

\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)

Hay \(B\le5\) với mọi giá trị của \(x\in R\)

Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)

Vậy...................

28 tháng 12 2017

Bài 4 :

\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)

\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)

Bài 5 :

\(A=1^2+3^2+6^2+9^2+.............+39^2\)

\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)

\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)

\(=10+3^2.818\)

\(=10+9.818\)

\(=7372\)

18 tháng 7 2017

\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

~ Học tốt ~

18 tháng 7 2017

Bài 1:

1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)

\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)

\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)

\(=3^2=9\)

2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)

\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)

\(=2^7:2^3:\dfrac{1}{2^4}\)

\(=2^4.2^4=256\)

3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)

\(=\dfrac{43}{48}\)

4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)

\(=-3-1+\dfrac{1}{8}\)

\(=-4+\dfrac{1}{8}\\ \)

\(=-\dfrac{31}{8}\)

5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)

Chúc bạn học tốt haha

3 tháng 8 2017

a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)

\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)

\(x=\dfrac{-7}{10}\)

b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)

\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)

\(x+\dfrac{5}{6}=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}-\dfrac{5}{6}\)

\(x=\dfrac{7}{30}\)

c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)

\(\dfrac{7}{5}x=\dfrac{-43}{35}\)

\(\Rightarrow x=\dfrac{-43}{49}\)

d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)

\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)

\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}-\dfrac{3}{4}\)

\(x=\dfrac{-5}{12}\)

e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)

\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)

\(x+\dfrac{4}{5}=2,15-3,75\)

\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)

\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)

\(x=\dfrac{-12}{5}\)

f) \(\left(x-2\right)^2=1\)

\(\Rightarrow x=1\)

Sức chịu đựng có giới hạn -.-

3 tháng 8 2017

- Mình tiếp tục cho Nguyễn Phương Trâm nhé.

g, \(\left(2x-1\right)^3=-27\)

\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)

\(\Rightarrow2x-1=-3\)

\(\Rightarrow2x=-2\)

=> \(x=-1\)

- Vậy x = -1

h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)

\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)

\(\Rightarrow\left(x-1\right)^2=900 \)

\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)

=> x = 31

i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)

=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{16}\)

- Vậy x=\(\dfrac{1}{16}\)

j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)

\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)

\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)

\(\Rightarrow x=\dfrac{3}{4}\)

- Vạy x = \(\dfrac{3}{4}\)

k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)

=>\(4^x=4\)

=> x = 1

- Vậy x = 1

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)

1 tháng 8 2017

làm bài 3 BĐT

theo bảng xét dấu

còn bài 1,2 ở trên là 1.1 và 1.2 đều trg bài 1.2

bài 1.2 (tức bài 2 ở trên )làm a,b,c,d

\còn bài 2( tức bài 2 ở trên) làm hết

1 tháng 8 2017

thanks

10 tháng 2 2018

a) \(-5\cdot\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\cdot\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ -5\cdot x+1-\dfrac{1}{2}\cdot x-\dfrac{1}{3}=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ x\cdot\left(-5-\dfrac{1}{2}\right)+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{3}{2}\cdot x\\ x\cdot\dfrac{-11}{2}+\dfrac{7}{6}=\dfrac{3}{2}\cdot x\\ \dfrac{3}{2}\cdot x-\dfrac{-11}{2}\cdot x=\dfrac{7}{6}\\ x\cdot\left(\dfrac{3}{2}-\dfrac{-11}{2}\right)=\dfrac{7}{6}\\ x\cdot7=\dfrac{7}{6}\\ x=\dfrac{7}{6}:7\\ x=\dfrac{1}{6}\)

Vậy x = \(\dfrac{1}{6}\)

11 tháng 2 2018

b, \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2^x\\ \dfrac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31}{2^{30}\cdot\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31\right)\cdot64}=2^x\\ \dfrac{1}{2^{30}\cdot2^6}=2^x\\ \dfrac{1}{2^{36}}=2^x\\ 2^{-36}=2^x\\ \Rightarrow x=-36\)