K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

=(1-2)+(3-4)+(5-6)+....+(100-101)

= -1+(-1)+(-1)+(-1)+...+50+....+(-1)

=-50+50

=0

5 tháng 3 2016

Sai de roi .Bieu thuc co 101 so hang ma lai nhom 2 so .

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000

1+2-3+4+5+6-7-8+9+10+........-99-100+101

=1+(2-3+4+5)+.....+(98-99-100+101)

=1+0+0+0+...+0

=1

TICK CHO MK NHA

18 tháng 12 2016

hình như bạn lm sai rồi, bài này ko giống n~ bài khác đâu

8 tháng 1 2017

cau nay chinh con me no

8 tháng 1 2017

con nay la 1209876

111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%

13 tháng 11 2023

C= 53+55+... +5101

⇔25C= 55+ 57+...+5103

⇔25C-C=(55+57+...+5103) - ( 53+55+...+5101)

⇔24C=5103  - 53

⇔C=(5103 - 53 ) / 24

CMTT : D=1 + 32+34+36+ ... + 3100

⇔9D= 32+34+36+38+...+ 3102

⇔9D-D=(32+34+36+38+...+ 3102) - (1 + 32+34+36+ ... + 3100)
⇔8D=3102-1

⇔D=(3102-1)/8

13 tháng 11 2023

Để thu gọn biểu thức \( C D \), chúng ta cần tính giá trị của \( C \) và \( D \) trước.

Đầu tiên, ta tính giá trị của \( C \):
\[ C = 5^{3} + 5^{5} + \ldots + 5^{101} \]

Đây là một dãy số hình học với công bội là 5. Ta có thể sử dụng công thức tổng của dãy số hình học để tính tổng này. Công thức tổng của dãy số hình học là:
\[ S = \frac{a(1 - r^n)}{1 - r} \]

Trong đó:
- \( S \) là tổng của dãy số hình học
- \( a \) là số hạng đầu tiên của dãy
- \( r \) là công bội của dãy
- \( n \) là số lượng số hạng trong dãy

Áp dụng công thức này vào biểu thức \( C \), ta có:
\[ C = \frac{5^3(1 - 5^{99})}{1 - 5} \]

Tiếp theo, ta tính giá trị của \( D \):
\[ D = 1 + 3^2 + 3^4 + \ldots + 3^{100} \]

Đây là một dãy số hình học với công bội là 9. Ta cũng có thể sử dụng công thức tổng của dãy số hình học để tính tổng này. Áp dụng công thức này vào biểu thức \( D \), ta có:
\[ D = \frac{1(1 - 3^{100})}{1 - 3^2} \]

Cuối cùng, để thu gọn biểu thức \( C D \), ta tính giá trị của \( C D \) bằng cách nhân giá trị của \( C \) và \( D \):
\[ C D = \frac{5^3(1 - 5^{99})}{1 - 5} \times \frac{1(1 - 3^{100})}{1 - 3^2} \]

Bạn có thể tính giá trị cuối cùng của biểu thức \( C D \) bằng cách thực hiện các phép tính trên.