![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(=9x^2-1\)
2) \(=9x^4-y^2\)
3)\(=25x^2-\dfrac{9}{4}\)
4) \(=x^3-1\)
5) \(=x^6-8\)
6) \(=x^3-64\)
7) \(=27x^3+8\)
8) \(=x^3-64\)
9) \(=x^3-\dfrac{1}{27}\)
10) \(x^3+\dfrac{1}{27}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tách ít ít ra thôi. để cả cộp thế này k ai làm cho đâu. mệt quá
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
a) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=2^{32}-1\)
\(\Leftrightarrow M=\dfrac{2^{32}-1}{3}\)
Vậy ...
b) \(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^8-1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^{16}-1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=7^{32}-1\)
\(\Leftrightarrow N=\dfrac{7^{32}-1}{3}\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
12
= \(\frac{24}{2}\)
= \(\frac{1}{2}\left(25-1\right)\)
= \(\frac{1}{2}\left(5^2-1\right)\)
Chép đề sai kìa
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-10x+16\)
\(=\left(x^2-2x\right)-\left(8x-16\right)\)
\(=x\left(x-2\right)+8\left(x-2\right)\)
\(=\left(x+8\right)\left(x-2\right)\)
b) \(\left(x+1\right)^4+4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2+4\right]\)
\(=\left(x+1\right)^2\left(x^2+2x+5\right)\)
c)\(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x^2-16\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(x+4\right)\left(x-4\right)\)
Nhớ tick
![](https://rs.olm.vn/images/avt/0.png?1311)
a: =>\(x^3+8-x^3-2x=15\)
=>2x=-7
hay x=-7/2
c: =>(5x-3)(5x+3)=0
=>x=3/5 hoặc x=-3/5
d: =>\(x^2+8x+16-x^2+1=16\)
=>8x+1=0
hay x=-1/8
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(4.\left(x-1\right)^2-9=0\)
\(\Rightarrow4.\left(x-1\right)^2=9\)
\(\Rightarrow\left(x-1\right)^2=9:4=\dfrac{9}{4}=\left(\pm\dfrac{3}{2}\right)^2\)
\(\Rightarrow x-1=\pm\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b) \(\dfrac{1}{4}-9.\left(x-1\right)^2=0\)
\(\Rightarrow9.\left(x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\left(x-1^2\right)=\dfrac{1}{36}=(\pm\dfrac{1}{6})^2\)
\(\Rightarrow x-1=\pm\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{6}\\x-1=\dfrac{-1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)
e) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\)
\(\Rightarrow\left(2x+\dfrac{3}{4}\right)^2=\dfrac{1}{16}=\left(\pm\dfrac{1}{4}\right)^2\)
\(\Rightarrow2x+\dfrac{3}{4}=\pm\dfrac{1}{4}\)
\(\Rightarrow\)\(\left[{}\begin{matrix}2x+\dfrac{3}{4}=\dfrac{1}{4}\\2x+\dfrac{3}{4}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
\(1-\frac{1}{n^2}=\frac{n^2-1}{n^2}=\frac{\left(n-1\right)\left(n+1\right)}{n\cdot n}\)
Do đó : \(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{n^2}\right)\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{\left(n-1\right)\left(n+1\right)}{n\cdot n}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot\left(n-1\right)}{2\cdot3\cdot4\cdot...\cdot n}\cdot\frac{3\cdot4\cdot5\cdot...\cdot\left(n+1\right)}{2\cdot3\cdot4\cdot...\cdot n}\)
\(=\frac{1}{n}\cdot\frac{n+1}{2}=\frac{n+1}{2n}\)