![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{\left(\dfrac{1}{2}:\dfrac{1}{2}-\dfrac{1}{4}:\dfrac{1}{4}+\dfrac{1}{8}:\dfrac{1}{8}-\dfrac{1}{10}:\dfrac{1}{10}\right)}{1+2+3+...+2008}\)
=0
c: =8,1*5/3*1875+13,5*625
=13,5(1875+625)
=13,5*2500
=33750
![](https://rs.olm.vn/images/avt/0.png?1311)
(1-1/2)×(1-1/3)×(1-1/4 )×...×(1-1/2006)×(1-1/2007)
=(2/2-1/2)×(3/3-1/3)×(4/4-1/4)×..×(2006/2006-1/2006)×(2007/2007-1/2007)
=1/2×2/3×3/4×..×2005/2006×2006/2007
=1/2007
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
3/4+5/4=8/4=2
2/3+3/4=8/12+9/12=17/12
1/3+5/7=7/21+15/21=22/21
Bài 2:
a: x-1/2=1/3
nên x=1/3+1/2=5/6
b: x-3/6=5/8
=>x-1/2=5/8
=>x=5/8+1/2=5/8+4/8=9/8
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{2}\times\frac{1}{3}\times\frac{1}{4}=\frac{1\times1\times1}{2\times3\times4}=\frac{1}{24}\)
\(\frac{1}{2}\times\frac{1}{3}\div\frac{1}{4}=\frac{1}{2}\times\frac{1}{3}\times\frac{4}{1}=\frac{1\times1\times4}{2\times3\times1}=\frac{4}{6}=\frac{2}{3}\)
\(\frac{1}{2}\div\frac{1}{3}\times\frac{1}{4}=\frac{1}{2}\times\frac{3}{1}\times\frac{1}{4}=\frac{1\times3\times1}{2\times1\times4}=\frac{3}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{128}+\dfrac{1}{128}-\dfrac{1}{256}\)
\(=1-\dfrac{1}{256}\)
\(=\dfrac{255}{256}\)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{13.14}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}\)
\(=1-\dfrac{1}{14}\)
\(=\dfrac{13}{14}\)
c) \(\dfrac{3}{15.18}+\dfrac{3}{18.21}+\dfrac{3}{21.24}+...+\dfrac{3}{87.90}\)
\(=3.\left(\dfrac{1}{15.18}+\dfrac{1}{18.21}+\dfrac{1}{21.24}+...+\dfrac{1}{87.90}\right)\)
\(=3.\left[\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}\right)+\dfrac{1}{3}.\left(\dfrac{1}{18}-\dfrac{1}{21}\right)+\dfrac{1}{3}.\left(\dfrac{1}{21}-\dfrac{1}{24}\right)+...+\dfrac{1}{3}.\left(\dfrac{1}{87}-\dfrac{1}{90}\right)\right]\)
\(=3.\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{24}+...+\dfrac{1}{87}-\dfrac{1}{90}\right)\)
\(=\dfrac{1}{15}-\dfrac{1}{90}\)
\(=\dfrac{6}{90}-\dfrac{1}{90}\)
\(=\dfrac{5}{90}=\dfrac{1}{18}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,=\dfrac{1}{3}\times\left(\dfrac{1}{2}+\dfrac{1}{3}\right)=\dfrac{1}{3}\times\dfrac{5}{6}=\dfrac{5}{18}\\ b,=\dfrac{4}{5}\times\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=\dfrac{4}{5}\times\dfrac{1}{6}=\dfrac{2}{15}\\ c,=456\times99-6\times99+456\\ =456\times\left(99+1\right)-594\\ =456\times100-594=45600-594=45006\\ d,=101\times\left(101-1\right)=101\times100=10100\)