
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




\(S=\frac{101}{102}+\frac{1}{1.2.2.3}+\frac{1}{2.3.2.3}+\frac{1}{3.4.2.3}+...+\frac{1}{17.18.2.3}=\frac{101}{102}+\frac{1}{6}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{17.18}\right)\)
Đặt BT trong ngoặc đơn là A
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{18-17}{17.18}=1-\frac{1}{18}=\frac{17}{18}\)
\(S=\frac{101}{120}+\frac{1}{6}.\frac{17}{18}\)

1.
A=\(\dfrac{3\left|x\right|+2}{\left|x\right|-5}=\dfrac{3\left|x\right|-15+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)}{\left|x\right|-5}+\dfrac{17}{\left|x-5\right|}=3+\dfrac{17}{\left|x\right|-5}\)
Để A \(\in\)Z thì \(\left|x\right|-5\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có :
\(\left|x\right|-5=-17\Rightarrow\left|x\right|=-12\left(KTM\right)\)
\(\left|x\right|-5=-1\Rightarrow\left|x\right|=4\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\left|x\right|-5=1\Rightarrow\left|x\right|=6\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(\left|x\right|-5=17\Rightarrow\left|x\right|=32\Rightarrow\left[{}\begin{matrix}x=32\\x=-32\end{matrix}\right.\)
Vậy để A \(\in\)Z thì x \(\in\) {-32;-6;-4;4;6;32}


=2x1x3x21+2x2x3x31+2x3x3x41+...+2x18x3x191+2x19x3x201=
=12𝑥3𝑥(11𝑥2+12𝑥3+13𝑥4+...+118𝑥19+119𝑥20)==2x31x(1x21+2x31+3x41+...+18x191+19x201)=
=16𝑥(2−11𝑥2+3−22𝑥3+4−33𝑥4+...+20−1919𝑥20)==61x(1x22−1+2x33−2+
\(1-\frac{1}{2\cdot3}-\frac{1}{4\cdot9}-\cdots-\frac{1}{38\cdot60}-\frac{1}{40\cdot63}\)
\(=1-\frac{1}{2\cdot3}-\left(\frac{1}{4\cdot9}+\frac{1}{6\cdot12}+\cdots+\frac{1}{38\cdot60}+\frac{1}{40\cdot63}\right)\)
\(=1-\frac16-\frac16\left(\frac16+\frac{1}{12}+\cdots+\frac{1}{19\cdot20}+\frac{1}{20\cdot21}\right)\)
\(=\frac56-\frac16\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdots+\frac{1}{19\cdot20}+\frac{1}{20\cdot21}\right)\)
\(=\frac56-\frac16\left(\frac12-\frac13+\frac13-\frac14+\cdots+\frac{1}{20}-\frac{1}{21}\right)\)
\(=\frac56-\frac16\left(\frac12-\frac{1}{21}\right)=\frac56-\frac16\cdot\frac{19}{42}=\frac56-\frac{19}{252}\)
\(=\frac{210}{252}-\frac{19}{252}=\frac{191}{252}\)