Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{101}{102}+\frac{1}{1.2.2.3}+\frac{1}{2.3.2.3}+\frac{1}{3.4.2.3}+...+\frac{1}{17.18.2.3}=\frac{101}{102}+\frac{1}{6}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{17.18}\right)\)
Đặt BT trong ngoặc đơn là A
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{18-17}{17.18}=1-\frac{1}{18}=\frac{17}{18}\)
\(S=\frac{101}{120}+\frac{1}{6}.\frac{17}{18}\)
1.
A=\(\dfrac{3\left|x\right|+2}{\left|x\right|-5}=\dfrac{3\left|x\right|-15+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)}{\left|x\right|-5}+\dfrac{17}{\left|x-5\right|}=3+\dfrac{17}{\left|x\right|-5}\)
Để A \(\in\)Z thì \(\left|x\right|-5\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có :
\(\left|x\right|-5=-17\Rightarrow\left|x\right|=-12\left(KTM\right)\)
\(\left|x\right|-5=-1\Rightarrow\left|x\right|=4\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\left|x\right|-5=1\Rightarrow\left|x\right|=6\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(\left|x\right|-5=17\Rightarrow\left|x\right|=32\Rightarrow\left[{}\begin{matrix}x=32\\x=-32\end{matrix}\right.\)
Vậy để A \(\in\)Z thì x \(\in\) {-32;-6;-4;4;6;32}
=2x1x3x21+2x2x3x31+2x3x3x41+...+2x18x3x191+2x19x3x201=
=12𝑥3𝑥(11𝑥2+12𝑥3+13𝑥4+...+118𝑥19+119𝑥20)==2x31x(1x21+2x31+3x41+...+18x191+19x201)=
=16𝑥(2−11𝑥2+3−22𝑥3+4−33𝑥4+...+20−1919𝑥20)==61x(1x22−1+2x33−2+3x44−3+...+19x2020−19)=
=16𝑥(1−12+12−13+13−14+...+119−120)==61x(1−21+21−31+31−41+...+191−201)=
=16𝑥(1−120)=16𝑥1920=19120=61x(1−201)=61x2019=12019