K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2023

\(A=2017:\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2018}\right)\)
\(=2017:\dfrac{2017}{2018}\)
\(=2017\cdot\dfrac{2018}{2017}\)
\(=2018\)
#NgDat

4 tháng 5 2023

\(A=2017:\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+...+\dfrac{1}{2017}\cdot\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{2018}{2018}-\dfrac{1}{2018}\right)\)

\(A=2017:\dfrac{2017}{2018}\)

\(A=2018.\)

31 tháng 12 2017

\(\frac{1}{1.2}\)\(+\frac{1}{2.3}+\)\(\frac{1}{3.4}\)\(+\)\(.............+\)\(\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

31 tháng 12 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}\)

 \(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{2018-2017}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

21 tháng 2 2023

Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Ta có:

\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)

\(S=1-\dfrac{1}{2018}\)

\(S=\dfrac{2017}{2018}\)

21 tháng 2 2023

=1/1.2+1/2.3+1/3.4+...1/2017.2018

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018

=1-1/2018

=2018/2018-1/2018

=2017/2018

7 tháng 8 2018

a) \(A=\frac{1}{5}-\frac{1}{5^2}+\frac{1}{5^3}-\frac{1}{5^4}+...+\frac{1}{5^{99}}-\frac{1}{5^{100}}\)

\(\Rightarrow5A=1-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{98}}-\frac{1}{5^{99}}\)

\(\Rightarrow5A+A=1-\frac{1}{5^{100}}\)

\(A=\frac{1-\frac{1}{5^{100}}}{6}\)

b) B = 1.2+2.3+3.4+...+2017.2018

=>3B=1.2.3 + 2.3.3+3.4.3+...+2017.2018.3

3B = 1.2.3 + 2.3.(4-1) +3.4.(5-2) +...+2017.2018.(2019-2016)

3B = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2017.2018.2019-2016.2017.2018

3B = 2017.2018.2019

\(B=\frac{2017.2018.2019}{3}\)

7 tháng 8 2018

3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2017.2018.3

3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2)+...+ 2017.2018(2019-2016)

3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2017.2018.2019 - 2016.2017.2018

3B = 2017.2018.2019

B = 2017.2018.2019/3 

B= 2739315938

2 tháng 10 2016
2ab.(b+a).(b+2a)=1b.(b+a)1(b+a).(b+2a)2ab.(b+a).(b+2a)=1b.(b+a)−1(b+a).(b+2a)
3ab.(b+a).(b+2a).(b+3a)=1b.(b+a).(b+2a)1(b+a)(b+2a)(b+3a)3ab.(b+a).(b+2a).(b+3a)=1b.(b+a).(b+2a)−1(b+a)(b+2a)(b+3a)
 
 
2 tháng 10 2016

xin lỗi nhiều nhé chờ chút mik làm lại

\(\frac{2a}{b.\left(b+a\right).\left(b+2a\right)}=\frac{1}{b\left(b+a\right)}=\frac{1}{\left(b+a\right)\left(b+2a\right)}.\)

\(\frac{3a}{b\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}=\frac{1}{b\left(b+a\right)\left(b+2a\right)}-\frac{1}{\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}.\)

tích nha

25 tháng 2 2020

\(C=\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2017\cdot2018}\right)-\)\(\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}\right)\)

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2017\cdot2018}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}\right)\)

\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+..+\frac{1}{2017}\)

\(\Rightarrow C=\left(\frac{1}{101}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}\right)-\left(\frac{1}{1010}+\frac{1}{1012}+...+\frac{1}{2017}\right)\)

\(\Rightarrow C=\frac{1}{2018}\)

15 tháng 7 2019

a) x - 3/97 + x - 2/98 = x - 1/99 + x/100

<=> x + 1/99 + 1 + x + 2/98 + 1 + x + 3/97 + 1 + (x + 4/96 + 1 + x + 5/95 + 1 + x + 10/90 + 1) = 0

<=> x + 100/99 + x + 100/98 + x + 100/97 + (x + 100/96 + x + 100/95 + x + 100/90) = 0

<=> (x + 100)(1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90) = 0

Mà 1/99 + 1/98 + 1/97 + 1/96 + 1/95 + 1/90 khác 0

=> x + 100 = 0

=> x = -100

c) (1/1.2 + 1/2.3 + ... + 1/99.100) - 2x = 1/2

<=> (1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100) - 2x = 1/2

<=> (1 - 1/100) - 2x = 1/2

<=> 99/100 - 2x = 1/2

<=> -2x = 1/2 - 99/100

<=> -2x = -49/100

<=> x = 49/200

=> x = 49/200

15 tháng 7 2019

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Rightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Rightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}>0\Rightarrow x+329=0\)

\(\Rightarrow x=-329\)

10 tháng 11 2016

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\)

10 tháng 11 2016

Tìm phần nguyên của A nha mọi người