K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

E=???

17 tháng 4 2018

E

13 tháng 8 2015

Ta có:

 

S<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)

S<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\)

S<1-\(\frac{1}{200}=\frac{199}{200}<1\)

S<1

14 tháng 7 2016

A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!

A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!

A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!

A = 1 - 1/2016! < 1 (đpcm)

M = 1/52 + 1/6+ 1/7+ ... + 1/1002

M > 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/100.101

M > 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/100 - 1/101

M > 1/5 - 1/101 > 1/5 - 1/30 = 1/6 = B

=> M > B (đpcm)

C = 1/20 + 1/21 + 1/22 + ... + 1/200

C > 1/200 + 1/200 + 1/200 + 1/200

       (181 phân số 1/200)

C > 1/200 . 181 = 181/200 > 180/200 = 9/10 (đpcm)

C = 1 101 + 1 102 + ... + 1 200 C = ( 1 101 + 1 102 + ... + 1 120 ) + ( 1 121 + 1 122 + . . + 1 150 ) + ( 1 151 + 1 152 + … + 1 180 ) + ( 1 181 + 1 182 + ... + 1 200 ) C > 20 . 1 120 + 30 . 1 150 + 30 . 1 180 + 20 . 1 200 C > 1 6 + 1 5 + 1 6 + 1 10 C > ( 1 6 + 1 6 ) + ( 1 5 + 1 10 ) C > 1 3 + 3 10 C > 19 30 = 76 120 C > 75 120 + 1 120 C > 5 8 + 1 120 Vậy C > 5 8 còn lại giống trên

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

Ta có : 

         1002 > 99 . 100

         1012 > 100 . 101

            ..............

         2002 > 199. 200

=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)

=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\)    \(\left(1\right)\)

Tương tự ta có :

    A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)

=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)

=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)

=>  A > \(\frac{1}{200}\)                   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)Ta có : 

             \(\frac{1}{200}< A< \frac{1}{99}\)

=> ĐPCM