Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
\((3x-2)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow3x-2=0\) hoặc \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\)
- \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\) ;
- \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\Leftrightarrow\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\Leftrightarrow10\left(x+3\right)=7\left(4x-3\right)\Leftrightarrow x=\frac{17}{6}\).
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{7}{16}\right\}\).
\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\10\left(x+3\right)=7\left(4x-3\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
vậy x=2/3 hoặc x=17/6
\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)
Giải \(\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\)
\(\Leftrightarrow5.2\left(x+3\right)=7\left(4x-3\right)\)
\(\Leftrightarrow10x+30=28x-21\)
\(\Leftrightarrow10x-28x=-21-30\)
\(\Leftrightarrow-18x=-51\)
\(\Leftrightarrow x=\frac{17}{6}\)
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne1,\text{ }x\ne-2\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=\frac{x\left(x-1\right)}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=x+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Rightarrow2\left(x+2\right)+\left(x-1\right)=0\)
\(\Leftrightarrow2x+4+x-1\)
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3x=\text{-3}\Leftrightarrow x=\text{-1}\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1\right\}\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(-x\right)\left(đk:x\ne1;-2\right)\)
\(\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x\left(x-1\right)}{x-1}-x\)
\(< =>\frac{2x+4+x-1}{\left(x-1\right)\left(x+2\right)}=x-x=0\)
\(< =>2x+4+x-1=0\)
\(< =>3x=1-4=-3\)
\(< =>x=\frac{-3}{3}=-1\left(tmđk\right)\)
Vậy nghiệm của phương trình trên là \(\left\{-1\right\}\)
( x - 2 ).( x + 3 )2 - ( x - 2 ).(x - 1)2 = 0
(=) ( x - 2 ).[ ( x + 3 )2 - ( x - 1 )2 ] = 0
(=) ( x - 2).[ x2 + 6x + 9 - x2 + 2x - 1] = 0
(=) ( x - 2 ) .( 8x + 8 ) = 0
(=) \(\orbr{\begin{cases}x-2=0\\8x+8=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy phương trình có nghiệm là : x = 2 , -1
b) 9x2 - 6x + 1 = 4x2
(=) 9x2 - 6x + 1 - 4x2 = 0
(=) 5x2 - 6x + 1 = 0
(=) 5x2 - 5x - x + 1 = 0
(=) 5x.( x - 1 ) - (x - 1) = 0
(=) ( x - 1 ).( 5x - 1) = 0
(=)\(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , \(\frac{1}{5}\)
c) ( x - 3 ) - \(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= 1
(=) \(\frac{3\left(x-3\right)}{3}\)\(-\)\(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= \(\frac{3}{3}\)
(=) 3.( x - 3) - ( x - 3 ).( 2x +1 ) = 3
(=) 3x - 9 - 2x2 +5x +3 -3 = 0
(=) -2x2 +8x -9 = 0 (loại )
Vậy phương trình vô nghiệm
d) x2 + 6x - 7 =0
(=) x2 +7x - x - 7 = 0
(=) x.( x + 7 ) - ( x + 7 ) = 0
(=) ( x - 1 ) .( x+7 ) = 0
(=) \(\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=-7\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , -7
`(x^2+1)^2+3x(x^2+1)+2x^2=0`
`<=>(x^2+1)^2+2(x^2+1). 3/2x+9/4x^2+-1/4x^2=0`
`<=>(x^2+1+3/2x)^2-1/4x^2=0`
`<=>(x^2+1+3/2x-1/2x)(x^2+1+3/2x+1/2x)=0`
`<=>(x^2+x+1)(x^2+2x+1)=0`
`<=>[(x+1/2)^2+3/4](x+1)^2=0`
`=>x+1=0`
`<=>x=-1`