Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{5}x-x=\frac{\left(-2018\right)^0}{5^2}\\ x\left(\frac{2}{5}-1\right)=\frac{1}{25}\\ x\left(\frac{2}{5}-\frac{5}{5}\right)=\frac{1}{25}\\ x\cdot\frac{-3}{5}=\frac{1}{25}\\ x=\frac{1}{25}:\frac{-3}{5}\\ x=\frac{1}{25}\cdot\frac{-5}{3}\\ x=\frac{-1}{15}\)Vậy \(x=\frac{-1}{15}\)
b) \(\left|-1\frac{1}{2}x+2x\right|-\frac{7}{4}=0,5\\ \left|x\left(-1\frac{1}{2}+2\right)\right|-\frac{7}{4}=\frac{1}{2}\\ \left|x\cdot\frac{1}{2}\right|=\frac{1}{2}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{2}{4}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x\cdot\frac{1}{2}=\frac{9}{4}\\x\cdot\frac{1}{2}=\frac{-9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}:\frac{1}{2}\\x=\frac{-9}{4}:\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}\cdot2\\x=\frac{-9}{4}\cdot2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=\frac{-9}{2}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{9}{2};\frac{-9}{2}\right\}\)
c) \(x+\left(x+\frac{2}{7}\right)+\frac{-5}{11}=\frac{4}{11}\\ x+x+\frac{2}{7}=\frac{4}{11}-\frac{-5}{11}\\ 2x+\frac{2}{7}=\frac{4}{11}+\frac{5}{11}\\ 2x+\frac{2}{7}=\frac{9}{11}\\ 2x=\frac{9}{11}-\frac{2}{7}\\ 2x=\frac{63}{77}-\frac{22}{77}\\ 2x=\frac{41}{77}\\ x=\frac{41}{77}:2\\ x=\frac{41}{77\cdot2}\\ x=\frac{41}{154}\)Vậy \(x=\frac{41}{154}\)
d) \(\left|0,25x-20\%\right|+\frac{3}{8}=1\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\frac{3}{8}-\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\\ \Rightarrow\left[{}\begin{matrix}\frac{1}{4}x-\frac{1}{5}=1\\\frac{1}{4}x-\frac{1}{5}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=1+\frac{1}{5}\\\frac{1}{4}x=\left(-1\right)+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{5}{5}+\frac{1}{5}\\\frac{1}{4}x=\frac{-5}{5}+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{6}{5}\\\frac{1}{4}x=\frac{-4}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}:\frac{1}{4}\\x=\frac{-4}{5}:\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}\cdot4\\x=\frac{-4}{5}\cdot4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{24}{5}\\x=\frac{-16}{5}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{24}{5};\frac{-16}{5}\right\}\)
\(0,25x+175\%x=x+\dfrac{9}{7}\\ x\left(0,25+1,75\right)=x+\dfrac{9}{7}\\ 2x=x+\dfrac{9}{7}\\ \dfrac{9}{7}=2x-x=x\\ x=\dfrac{9}{7}\)
Giải:
a) \(\left(4,5-2x\right).\left(-1\dfrac{4}{7}\right)=\dfrac{11}{14}\)
\(\Leftrightarrow\left(4,5-2x\right).\left(-\dfrac{3}{7}\right)=\dfrac{11}{14}\)
\(\Leftrightarrow4,5-2x=\dfrac{11}{14}:\left(-\dfrac{3}{7}\right)=-\dfrac{11}{6}\)
\(\Leftrightarrow2x=4,5-\left(-\dfrac{11}{6}\right)\)
\(\Leftrightarrow2x=\dfrac{19}{3}\)
\(\Leftrightarrow x=\dfrac{19}{3}:2=\dfrac{19}{6}\)
Vậy ...
b) \(\dfrac{4}{9}x=\dfrac{9}{8}-0,125\)
\(\Leftrightarrow\dfrac{4}{9}x=\dfrac{9}{8}-\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{9}x=1\)
\(\Leftrightarrow x=1:\dfrac{4}{9}=\dfrac{9}{4}\)
Vậy ...
Các câu còn lại làm tương tự.
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
a
\(5\frac{4}{7}:x+=13\)
\(\frac{39}{7}:x=13\)
\(x=\frac{39}{7}:13\)
\(x=\frac{3}{7}\)
\(\frac{4}{7}x=\frac{9}{8}-0,125\)
\(\frac{4}{7}x=1\)
\(x=1:\frac{4}{7}\)
\(x=\frac{7}{4}=1\frac{3}{4}\)
\(1\frac{3}{8}:x=-5\frac{1}{2}\)
\(\frac{11}{8}:x=\frac{-11}{2}\)
\(x=\frac{11}{8}:\frac{-11}{2}\)
\(x=\frac{-1}{4}\)
a) \(0,25x+175\%x=x+\frac{9}{7}\)
\(0,25x+175\%x+x=\frac{9}{7}\)
\(0,25x+\frac{7}{4}x+x=\frac{9}{7}\)
\(\left(0,25+\frac{7}{4}+1\right)x=\frac{9}{7}\)
\(3x=\frac{9}{7}\)
\(x=\frac{9}{7}\div3\)
\(x=\frac{9}{7}\times\frac{1}{3}\)
\(x=\frac{3}{7}\)
vậy \(x=\frac{3}{7}\)
b)\(2x-\frac{3}{2}-x=1\frac{1}{5}\)
\(2x-x=1\frac{1}{5}+\frac{3}{2}\)
\(x=\frac{27}{10}\)
vậy \(x=\frac{27}{10}\)