
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:Sửa đề: \(\hat{B}-\hat{C}=30^0\)
Ta có: ABCD là hình thang
=>AB//CD
=>\(\hat{A}+\hat{D}=180^0\)
=>\(3\cdot\hat{D}+\hat{D}=180^0\)
=>\(4\cdot\hat{D}=180^0\)
=>\(\hat{D}=\frac{180^0}{4}=45^0\)
\(\hat{A}=3\cdot\hat{D}=3\cdot45^0=135^0\)
Ta có: AB//CD
=>\(\hat{B}+\hat{C}=180^0\)
mà \(\hat{B}-\hat{C}=30^0\)
nên \(\hat{B}=\frac{180^0+30^0}{2}=105^0;\hat{C}=105^0-30^0=75^0\)
Bài 3:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\hat{HAB}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK và BH=CK
Xét ΔABC có \(\frac{AK}{AB}=\frac{AH}{AC}\)
nên KH//BC
Xét tứ giác BKHC có KH//BC và KC=BH
nên BKHC là hình thang cân
Bài 4:Sửa đề: Bỏ câu AC cắt BD tại O
b: Xét ΔABD và ΔBAC có
AB chung
BD=AC
AD=BC
Do đó: ΔABD=ΔBAC
=>\(\hat{ABD}=\hat{BAC}\)
=>\(\hat{IAB}=\hat{IBA}\)
=>IA=IB
c:
Xét ΔODC có \(\hat{ODC}=\hat{OCD}\)
nên ΔOCD cân tại O
=>OD=OC
=>O nằm trên đường trung trực của DC(1)
Ta có: IA+IC=AC
IB+ID=BD
mà IA=IB và AC=BD
nên IC=ID
=>I nằm trên đường trung trực của DC(2)
Từ (1),(2) suy ra OI là đường trung trực của DC
Ta có: OA+AD=OD
OB+BC=OC
mà AD=BC và OC=OD
nên OA=OB
=>O nằm trên đường trung trực của AB(3)
Ta có: IA=IB
=>I nằm trên đường trung trực của AB(4)
Từ (3),(4) suy ra OI là đường trung trực của AB

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

1: Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{BI}{BC}\)
Xét ΔBAC có IE//AB
nên \(\frac{CE}{CA}=\frac{CI}{CB}\)
ta có: \(\frac{BK}{BA}+\frac{CE}{CA}\)
\(=\frac{BI}{BC}+\frac{CI}{BC}=\frac{BC}{BC}=1\)
2: Qua M, kẻ MG//IE(G∈AC)
=>DE//MG
Xét ΔAMG có DE//MG
nên \(\frac{AE}{AG}=\frac{DE}{MG}\)
=>\(\frac{DE}{AE}=\frac{MG}{AG}\)
ta có: MG//IE
IE//AB
Do đó: MG//AB
Xét ΔABC có
M là trung điểm của BC
MG//AB
Do đó: G là trung điểm của AC
=>GA=GC
=>\(\frac{DE}{AE}=\frac{MG}{AG}=\frac{MG}{CG}\)
Xét ΔCAB có MG//AB
nên \(\frac{MG}{AB}=\frac{CG}{AC}\)
=>\(\frac{MG}{CG}=\frac{AB}{AC}\)
=>\(\frac{DE}{AE}=\frac{AB}{AC}\)
c:
Xét tứ giác AKIE có
AK//IE
AE//KI
Do đó: AKIE là hình bình hành
=>KI=AE: AK=IE
Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{KI}{AC}\)
=>\(\frac{BK}{KI}=\frac{AB}{AC}\)
=>\(\frac{DE}{AE}=\frac{BK}{KI}\)
mà AE=KI
nên DE=BK

Bài 4:
AB//CD
=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)
mà \(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)
nên \(\hat{DAK}=\hat{DKA}\)
=>DA=DK
Ta có: DK+KC=DC
DA+BC=DC
mà DK=DA
nên CK=CB
=>ΔCKB cân tại C
=>\(\hat{CKB}=\hat{CBK}\)
mà \(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)
nên \(\hat{ABK}=\hat{CBK}\)
=>BK là phân giác của góc ABC
Bài 2:
a: Xét ΔDAB có
K,E lần lượt là trung điểm của DA,DB
=>KE là đường trung bình của ΔDAB
=>KE//AB và \(KE=\frac{AB}{2}\)
Xét ΔCAB có
F,G lần lượt là trung điểm của CA,CB
Do đó: FG là đường trung bình của ΔCAB
=>FG//AB và \(FG=\frac{AB}{2}\)
Xét hình thang ABCD có
K,G lần lượt là trung điểm của AD,BC
=>KG là đường trung bình của hình thang ABCD
=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)
Ta có: FG//AB
KG//AB
FG,KG có điểm chung là G
Do đó: F,G,K thẳng hàng(1)
ta có: KE//AB
KG//AB
KE,KG có điểm chung là K
Do đó: K,E,G thẳng hàng(2)
Từ (1),(2) suy ra K,E,F,G thẳng hàng
b: Ta có: KE+EF+FG=KG
=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)
=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

Bài 1:
a: \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)
\(=8a^3+4a^2b+2ab^2-4a^2b-2ab^2-b^3\)
\(=8a^3-b^3\)
b: \(\left(3a+b\right)\left(9a^2-3ab+b^2\right)\)
\(=27a^3-9a^2b+3ab^2+9a^2b-3ab^2+b^3\)
\(=27a^3+b^3\)
c: \(\left(3a+2b\right)\left(3a-2b\right)-9a^2\)
\(=\left(3a\right)^2-\left(2b\right)^2-9a^2\)
\(=9a^2-4b^2-9a^2=-4b^2\)
d: \(\left(2x-3y\right)^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\)
\(=4x^2-12xy+9y^2\)
e: \(\left(3x-2y\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^3-54x^2y+36xy^2-8y^3\)
Bài 2:
a: \(\left(3x-5\right)\left(-5x+7\right)-\left(5x+2\right)\left(-3x+2\right)=4\)
=>\(-15x^2+21x+25x-35-\left(-15x^2+10x-6x+4\right)=4\)
=>\(-15x^2+46x-35+15x^2-4x-4=4\)
=>42x-39=4
=>42x=43
=>\(x=\frac{43}{42}\)
b: \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
=>\(6x^2-6x^2+4x-15x+10=7\)
=>-11x=7-10=-3
=>\(x=\frac{3}{11}\)

Bài 1:
a: \(A=x^2-4x+9\)
\(=x^2-4x+4+5\)
\(=\left(x-2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 2:
a: \(M=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(P=2x-2x^2-5\)
\(=-2\cdot\left(x^2-x+\frac52\right)\)
\(=-2\left(x^2-x+\frac14+\frac94\right)\)
\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 3:
a: \(A=x^2-4x+24\)
\(=x^2-4x+4+20\)
\(=\left(x-2\right)^2+20\ge20\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=2x^2-8x+1\)
\(=2\left(x^2-4x+\frac12\right)\)
\(=2\left(x^2-4x+4-\frac72\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
c: \(C=3x^2+x-1\)
\(=3\left(x^2+\frac13x-\frac13\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x+\frac16=0\)
=>\(x=-\frac16\)
Bài 4:
a: \(A=-5x^2-4x+1\)
\(=-5\left(x^2+\frac45x-\frac15\right)\)
\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)
\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)
Dấu '=' xảy ra khi \(x+\frac25=0\)
=>\(x=-\frac25\)
b: \(B=-3x^2+x+1\)
\(=-3\left(x^2-\frac13x-\frac13\right)\)
\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x-\frac16=0\)
=>\(x=\frac16\)