K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Sửa đề: \(\hat{B}-\hat{C}=30^0\)

Ta có: ABCD là hình thang

=>AB//CD

=>\(\hat{A}+\hat{D}=180^0\)

=>\(3\cdot\hat{D}+\hat{D}=180^0\)

=>\(4\cdot\hat{D}=180^0\)

=>\(\hat{D}=\frac{180^0}{4}=45^0\)

\(\hat{A}=3\cdot\hat{D}=3\cdot45^0=135^0\)

Ta có: AB//CD

=>\(\hat{B}+\hat{C}=180^0\)

\(\hat{B}-\hat{C}=30^0\)

nên \(\hat{B}=\frac{180^0+30^0}{2}=105^0;\hat{C}=105^0-30^0=75^0\)

Bài 3:

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\hat{HAB}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK và BH=CK

Xét ΔABC có \(\frac{AK}{AB}=\frac{AH}{AC}\)

nên KH//BC

Xét tứ giác BKHC có KH//BC và KC=BH

nên BKHC là hình thang cân

Bài 4:Sửa đề: Bỏ câu AC cắt BD tại O

b: Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC

=>\(\hat{ABD}=\hat{BAC}\)

=>\(\hat{IAB}=\hat{IBA}\)

=>IA=IB

c:

Xét ΔODC có \(\hat{ODC}=\hat{OCD}\)

nên ΔOCD cân tại O

=>OD=OC

=>O nằm trên đường trung trực của DC(1)

Ta có: IA+IC=AC

IB+ID=BD

mà IA=IB và AC=BD

nên IC=ID

=>I nằm trên đường trung trực của DC(2)

Từ (1),(2) suy ra OI là đường trung trực của DC

Ta có: OA+AD=OD

OB+BC=OC

mà AD=BC và OC=OD

nên OA=OB

=>O nằm trên đường trung trực của AB(3)

Ta có: IA=IB

=>I nằm trên đường trung trực của AB(4)

Từ (3),(4) suy ra OI là đường trung trực của AB

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

19 tháng 8

trình


1: Xét ΔBAC có KI//AC

nên \(\frac{BK}{BA}=\frac{BI}{BC}\)

Xét ΔBAC có IE//AB

nên \(\frac{CE}{CA}=\frac{CI}{CB}\)

ta có: \(\frac{BK}{BA}+\frac{CE}{CA}\)

\(=\frac{BI}{BC}+\frac{CI}{BC}=\frac{BC}{BC}=1\)

2: Qua M, kẻ MG//IE(G∈AC)

=>DE//MG

Xét ΔAMG có DE//MG

nên \(\frac{AE}{AG}=\frac{DE}{MG}\)

=>\(\frac{DE}{AE}=\frac{MG}{AG}\)

ta có: MG//IE

IE//AB

Do đó: MG//AB

Xét ΔABC có

M là trung điểm của BC

MG//AB

Do đó: G là trung điểm của AC

=>GA=GC

=>\(\frac{DE}{AE}=\frac{MG}{AG}=\frac{MG}{CG}\)

Xét ΔCAB có MG//AB

nên \(\frac{MG}{AB}=\frac{CG}{AC}\)

=>\(\frac{MG}{CG}=\frac{AB}{AC}\)

=>\(\frac{DE}{AE}=\frac{AB}{AC}\)

c:

Xét tứ giác AKIE có

AK//IE

AE//KI

Do đó: AKIE là hình bình hành

=>KI=AE: AK=IE

Xét ΔBAC có KI//AC
nên \(\frac{BK}{BA}=\frac{KI}{AC}\)

=>\(\frac{BK}{KI}=\frac{AB}{AC}\)

=>\(\frac{DE}{AE}=\frac{BK}{KI}\)

mà AE=KI

nên DE=BK

Bài 4:

AB//CD

=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)

\(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)

nên \(\hat{DAK}=\hat{DKA}\)

=>DA=DK

Ta có: DK+KC=DC

DA+BC=DC

mà DK=DA

nên CK=CB

=>ΔCKB cân tại C

=>\(\hat{CKB}=\hat{CBK}\)

\(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)

nên \(\hat{ABK}=\hat{CBK}\)

=>BK là phân giác của góc ABC

Bài 2:

a: Xét ΔDAB có

K,E lần lượt là trung điểm của DA,DB

=>KE là đường trung bình của ΔDAB

=>KE//AB và \(KE=\frac{AB}{2}\)

Xét ΔCAB có

F,G lần lượt là trung điểm của CA,CB

Do đó: FG là đường trung bình của ΔCAB

=>FG//AB và \(FG=\frac{AB}{2}\)

Xét hình thang ABCD có

K,G lần lượt là trung điểm của AD,BC

=>KG là đường trung bình của hình thang ABCD

=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)

Ta có: FG//AB

KG//AB

FG,KG có điểm chung là G

Do đó: F,G,K thẳng hàng(1)

ta có: KE//AB

KG//AB

KE,KG có điểm chung là K

Do đó: K,E,G thẳng hàng(2)

Từ (1),(2) suy ra K,E,F,G thẳng hàng

b: Ta có: KE+EF+FG=KG

=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)

=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

Bài 1:

a: \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)

\(=8a^3+4a^2b+2ab^2-4a^2b-2ab^2-b^3\)

\(=8a^3-b^3\)

b: \(\left(3a+b\right)\left(9a^2-3ab+b^2\right)\)

\(=27a^3-9a^2b+3ab^2+9a^2b-3ab^2+b^3\)

\(=27a^3+b^3\)

c: \(\left(3a+2b\right)\left(3a-2b\right)-9a^2\)

\(=\left(3a\right)^2-\left(2b\right)^2-9a^2\)

\(=9a^2-4b^2-9a^2=-4b^2\)

d: \(\left(2x-3y\right)^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\)

\(=4x^2-12xy+9y^2\)

e: \(\left(3x-2y\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^3-54x^2y+36xy^2-8y^3\)

Bài 2:

a: \(\left(3x-5\right)\left(-5x+7\right)-\left(5x+2\right)\left(-3x+2\right)=4\)

=>\(-15x^2+21x+25x-35-\left(-15x^2+10x-6x+4\right)=4\)

=>\(-15x^2+46x-35+15x^2-4x-4=4\)

=>42x-39=4

=>42x=43

=>\(x=\frac{43}{42}\)

b: \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)

=>\(6x^2-6x^2+4x-15x+10=7\)

=>-11x=7-10=-3

=>\(x=\frac{3}{11}\)

Bài 1:

a: \(A=x^2-4x+9\)

\(=x^2-4x+4+5\)

\(=\left(x-2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 2:

a: \(M=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(P=2x-2x^2-5\)

\(=-2\cdot\left(x^2-x+\frac52\right)\)

\(=-2\left(x^2-x+\frac14+\frac94\right)\)

\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)

Dấu '=' xảy ra khi \(x-\frac12=0\)

=>\(x=\frac12\)

Bài 3:

a: \(A=x^2-4x+24\)

\(=x^2-4x+4+20\)

\(=\left(x-2\right)^2+20\ge20\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(B=2x^2-8x+1\)

\(=2\left(x^2-4x+\frac12\right)\)

\(=2\left(x^2-4x+4-\frac72\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

c: \(C=3x^2+x-1\)

\(=3\left(x^2+\frac13x-\frac13\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x+\frac16=0\)

=>\(x=-\frac16\)

Bài 4:

a: \(A=-5x^2-4x+1\)

\(=-5\left(x^2+\frac45x-\frac15\right)\)

\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)

\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)

Dấu '=' xảy ra khi \(x+\frac25=0\)

=>\(x=-\frac25\)

b: \(B=-3x^2+x+1\)

\(=-3\left(x^2-\frac13x-\frac13\right)\)

\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)

\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)

Dấu '=' xảy ra khi \(x-\frac16=0\)

=>\(x=\frac16\)

Giúp em với ạ. Em cần gấp ạ. Cảm ơn nhiều ạ.