
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đề:
- Người A và B có số táo bằng nhau, gọi là \(n\) quả mỗi người.
- Giá dự kiến:
- A bán \(10000 / 3\) quả (≈ 3333 đ/quả).
- B bán \(10000 / 2\) quả (5000 đ/quả).
- Thực tế: B gộp chung, bán \(20000 / 5\) quả (4000 đ/quả).
- Sau khi bán hết, đếm tiền thì thiếu 15000 đ so với dự kiến.
- Hỏi số tiền của B thực thu nhiều hơn A bao nhiêu?
Bước 1: Tính tiền dự kiến nếu bán riêng
- A dự kiến:
\(T_{A} = \frac{10000}{3} \cdot n = \frac{10000 n}{3} .\) - B dự kiến:
\(T_{B} = \frac{10000}{2} \cdot n = 5000 n .\) - Tổng dự kiến:
\(T = \frac{10000 n}{3} + 5000 n .\)
Bước 2: Tính tiền thực tế khi gộp bán
- Tổng số táo: \(2 n\).
- Giá bán: \(20000 / 5 = 4000\) đ/quả.
- Tổng tiền thu được:
\(T^{'} = 4000 \cdot 2 n = 8000 n .\)
Bước 3: Lập phương trình “thiếu 15000 đ”
\(T - T^{'} = 15000.\)
Thay vào:
\(\left(\right. \frac{10000 n}{3} + 5000 n \left.\right) - 8000 n = 15000.\) \(\frac{10000 n}{3} - 3000 n = 15000.\) \(\frac{10000 n - 9000 n}{3} = 15000.\) \(\frac{1000 n}{3} = 15000 \Rightarrow n = 45.\)
Bước 4: Tính tiền của A và B trong thực tế
- A có 45 quả. Bán chung giá 4000 đ/quả →
\(T_{A}^{'} = 45 \cdot 4000 = 180000\). - B cũng 45 quả →
\(T_{B}^{'} = 45 \cdot 4000 = 180000\).
Bước 5: So sánh
- Dự kiến:
- A: \(\frac{10000}{3} \cdot 45 = 150000\).
- B: \(5000 \cdot 45 = 225000\).
- Thực tế:
- A: 180000.
- B: 180000.
→ Người A lãi thêm \(30000\) so với dự kiến.
→ Người B mất đi \(45000\) so với dự kiến.
→ So sánh A và B trong thực tế:
\(180000 - 180000 = 0.\)
✅ Kết quả:
Trong thực tế, số tiền của B không nhiều hơn A → hai người thu bằng nhau.
Nhưng vì đề hỏi “B thu ít hơn so với dự kiến bao nhiêu?” thì ta có: người B thu ít hơn người A 0 đồng, nhưng so với dự kiến thì B mất 45.000 đồng còn A được lợi 30.000 đồng.

Bài giải
Gọi số táo của mỗi người là n quả.
Dự kiến ban đầu:
- Người A bán 10000 đồng/3 quả → mỗi quả 10000/3 đồng. Tổng tiền dự kiến của A: n × 10000/3
- Người B bán 10000 đồng/2 quả → mỗi quả 5000 đồng. Tổng tiền dự kiến của B: n × 5000
Tổng tiền dự kiến: n × (10000/3 + 5000) = n × (10000/3 + 15000/3) = n × 25000/3
Người B bán chung cả 2 loại táo với giá 20000/5 quả = 4000 đồng/quả.
Tổng số táo là 2n, bán hết được 2n × 4000 = 8000n đồng.
Thiếu 15000 đồng so với dự kiến:
8000n = n × 25000/3 - 15000
Nhân 3: 24000n = 25000n - 45000 → 1000n = 45000 → n = 45
Tiền thực tế: 8000 × 45 = 360000 đồng
Giá bán thực tế mỗi quả là 4000 đồng, nên số tiền của mỗi người được chia theo số quả họ góp:
- A góp 45 quả → thực tế thu 45 × 4000 = 180000 đồng
- B góp 45 quả → thực tế thu 180000 đồng
Chênh lệch so với dự kiến ban đầu:
- A dự kiến: 45 × 10000/3 = 150000 đồng → thực tế 180000, lãi hơn 30000 đồng
- B dự kiến: 45 × 5000 = 225000 đồng → thực tế 180000, ít hơn 45000 đồng
Số tiền B thu ít hơn A: 180000 - 180000 = 0 đồng (nhưng so với dự kiến thì B ít hơn A 75000 đồng)
Đáp án: Người B thu ít hơn người A (so với dự kiến) là 75000 đồng.
Cho mình xin 1 tick với ạ

Đề tóm tắt:
- Tổng chi phí xây cầu: 340 triệu.
- Đơn vị 1: 8 xe, cách 1,5 km.
- Đơn vị 2: 5 xe, cách 3 km.
- Đơn vị 3: 4 xe, cách 1 km.
- Số tiền mỗi đơn vị đóng tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách.
Bước 1: Xác định "trọng số" của từng đơn vị
Công thức:
\(S \overset{ˊ}{\hat{o}} \&\text{nbsp}; t i \overset{ˋ}{\hat{e}} n \propto \frac{S \overset{ˊ}{\hat{o}} \&\text{nbsp}; x e}{K h o ả n g \&\text{nbsp}; c \overset{ˊ}{a} c h}\)
- Đơn vị 1: \(\frac{8}{1 , 5} = \frac{16}{3} \approx 5 , 33\).
- Đơn vị 2: \(\frac{5}{3} \approx 1 , 67\).
- Đơn vị 3: \(\frac{4}{1} = 4\).
Bước 2: Tổng hệ số
\(\frac{16}{3} + \frac{5}{3} + 4 = \frac{16 + 5}{3} + 4 = 7 + 4 = 11.\)
Bước 3: Phân chia số tiền
Tổng 340 triệu ứng với 11 phần.
→ Mỗi phần:
\(\frac{340}{11} \approx 30 , 91 \&\text{nbsp};\text{tri}ệ\text{u} .\)
- Đơn vị 1: \(\frac{16}{3} \times 30 , 91 \approx 164 , 85 \&\text{nbsp};\text{tri}ệ\text{u}\).
- Đơn vị 2: \(\frac{5}{3} \times 30 , 91 \approx 51 , 52 \&\text{nbsp};\text{tri}ệ\text{u}\).
- Đơn vị 3: \(4 \times 30 , 91 \approx 123 , 64 \&\text{nbsp};\text{tri}ệ\text{u}\).
✅ Kết quả:
- Đơn vị 1: khoảng 164,85 triệu đồng.
- Đơn vị 2: khoảng 51,52 triệu đồng.
- Đơn vị 3: khoảng 123,64 triệu đồng.
(Tổng đúng 340 triệu đồng).

Gọi ba phần được chia lần lượt là x,y,z
Ba phần được chia theo tỉ lệ là \(0,5:1\frac23:2\frac14=\frac12:\frac53:\frac94\) nên \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}\)
Đặt \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}=k\)
=>\(x=\frac12k;y=\frac53k;z=\frac94k\)
Tổng bình phương của ba phần được chia là 4660 nên ta có:
\(x^2+y^2+z^2=4660\)
=>\(\left(\frac12k\right)^2+\left(\frac53k\right)^2+\left(\frac94k\right)^2=4660\)
=>\(\frac14k^2+\frac{25}{9}k^2+\frac{81}{16}k^2=4660\)
=>\(k^2=576\)
=>\(\left[\begin{array}{l}k=24\\ k=-24\end{array}\right.\)
TH1: k=24
=>\(\begin{cases}x=\frac12\cdot24=12\\ y=\frac53\cdot24=40\\ z=\frac94\cdot24=54\end{cases}\)
A=x+y+z=12+40+54=62+54=116
TH2: k=-24
=>\(\begin{cases}x=\frac12\cdot\left(-24\right)=12\\ y=\frac53\cdot\left(-24\right)=40\\ z=\frac94\cdot\left(-24\right)=54\end{cases}\)
A=x+y+z=-12-40-54=-116

a: x,y là hai đại lượng tỉ lệ nghịch
=>\(x_1\cdot y_1=x_2\cdot y_2\)
=>\(3\cdot y_1=2\cdot y_2\)
=>\(\frac{y_1}{2}=\frac{y_2}{3}\)
mà \(2y_1+3\cdot y_2=-26\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{y_1}{2}=\frac{y_2}{3}=\frac{2y_1+3y_1}{2\cdot2+3\cdot3}=\frac{-26}{13}=-2\)
=>\(\begin{cases}y_1=-2\cdot2=-4\\ y_2=-2\cdot3=-6\end{cases}\)
b: \(x_1\cdot y_1=x_2\cdot y_2\)
=>\(x_1\cdot\left(-10\right)=y_2\cdot\left(-4\right)\)
=>\(5x_1=2y_2\)
=>\(\frac{x_1}{2}=\frac{y_2}{5}\)
mà \(3x_1-2y_2=32\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x_1}{2}=\frac{y_2}{5}=\frac{3x_1-2y_2}{3\cdot2-2\cdot5}=\frac{32}{-4}=-8\)
=>\(\begin{cases}x_1=-8\cdot2=-16\\ y_2=-8\cdot5=-40\end{cases}\)

Các cặp góc so le trong là: \(\hat{A_1};\hat{B_7}\) ; \(\hat{A_4};\hat{B_6}\)
Các cặp góc đồng vị là: \(\hat{A_2};\hat{B_6}\) ; \(\hat{A_1};\hat{B_5}\) ; \(\hat{A_3};\hat{B_7}\); \(\hat{A_4};\hat{B_8}\)
Các cặp góc trong cùng phía là: \(\hat{A_1};\hat{B_6}\) ; \(\hat{A_4};\hat{B_7}\)
Các góc ngoài cùng phía là: \(\hat{A_3};\hat{B_8}\) ; \(\hat{A_2};\hat{B_5}\)
Các góc so le ngoài là: \(\hat{A_2};\hat{B_8}\) ; \(\hat{A_3};\hat{B_5}\)

Ta có: \(x+120^0=180^0\) (hai góc kề bù)
=>\(x=180^0-120^0=60^0\)
Ta có: x=y (hai góc đối đỉnh)
mà \(x=60^0\)
nên \(y=60^0\)
Ta có: \(z+60^0=180^0\) (hai góc kề bù)
=>\(z=180^0-60^0=120^0\)
x = 60\(^0\) (hai góc đồng vị)
x = y = 60\(^0\) (hai góc đối đỉnh)
z = 120\(^0\) (slt)
t = 60\(^0\) (hai góc đối đỉnh)

1: Các cặp góc so le trong là \(\hat{A_4};\hat{B_2}\) ; \(\hat{A_3};\hat{B_1}\)
Các cặp góc đồng vị là \(\hat{A_1};\hat{B_1}\) ; \(\hat{A_2};\hat{B_2}\) ; \(\hat{A_4};\hat{B_4}\) ; \(\hat{A_3};\hat{B_3}\)
Các cặp góc trong cùng phía là: \(\hat{A_4};\hat{B_1}\) ; \(\hat{A_3};\hat{B_2}\)
2: Ta có: \(\hat{A_2}+\hat{A_3}=180^0\) (hai góc kề bù)
=>\(\hat{A_3}=180^0-60^0=120^0\)
Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)
mà \(\hat{A_2}=60^0\)
nên \(\hat{A_4}=60^0\)
Ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)
mà \(\hat{A_3}=120^0\)
nên \(\hat{A_1}=120^0\)
Ta có: \(\hat{B_2}+\hat{B_3}=180^0\) (hai góc kề bù)
=>\(\hat{B_3}=180^0-60^0=120^0\)
ta có: \(\hat{B_1}=\hat{B_3}\) (hai góc đối đỉnh)
mà \(\hat{B_3}=120^0\)
nên \(\hat{B_1}=120^0\)
ta có: \(\hat{B_2}=\hat{B_4}\) (hai góc đối đỉnh)
mà \(\hat{B_2}=60^0\)
nên \(\hat{B_4}=60^0\)

Bài giải:
Số tiền mỗi đơn vị đóng góp tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách, nên hệ số tỉ lệ của từng đơn vị là:
- Đơn vị 1: \(\frac{8}{1 , 5} = 5,33\)
- Đơn vị 2: \(\frac{5}{3} \approx 1,67\)
- Đơn vị 3: \(\frac{4}{1} = 4\)
Tổng hệ số: \(5,33 + 1,67 + 4 = 11\).
Vì tổng chi phí là \(340\) triệu đồng, mỗi đơn vị hệ số 1 sẽ trả \(\frac{340}{11} \approx 30,94\) triệu đồng.
Vậy:
- Đơn vị 1 trả: \(5,33 \times 30,94 \approx 164,85\) triệu đồng
- Đơn vị 2 trả: \(1,67 \times 30,94 \approx 51,52\) triệu đồng
- Đơn vị 3 trả: \(4 \times 30,94 \approx 123,64\) triệu đồng.
Gọi \(x\) là số quả táo của mỗi người ban đầu.
*Giá bán dự kiến của A là 10 000 đồng/3 quả, tức mỗi quả \(\frac{10 \textrm{ } 000}{3}\) đồng
*Giá bán dự kiến của B là 10 000 đồng/2 quả, tức mỗi quả 5 000 đồng.
+, Nếu bán riêng, số tiền dự kiến của cả hai là \(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x\).
Khi B bán chung cả 2 loại táo với giá 20 000 đồng/5 quả, tức 4 000 đồng/quả, tổng số quả là \(2 x\) nên số tiền thực tế thu được là \(8 \textrm{ } 000 x\). Theo đề, số tiền thực tế ít hơn dự kiến 15 000 đồng nên ta có phương trình là:
\(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x - 8 \textrm{ } 000 x = 15 \textrm{ } 000\)
=> \(x = 45\). Mỗi người có 45 quả, khi bán chung giá 4 000 đồng/quả, mỗi người nhận \(45 \times 4 \textrm{ } 000 = 180 \textrm{ } 000\) đồng. Vậy số tiền B thu nhiều hơn A là \(0\) đồng.
Tick cho mik nhé