K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

Bài giải:

Số tiền mỗi đơn vị đóng góp tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách, nên hệ số tỉ lệ của từng đơn vị là:

  • Đơn vị 1: \(\frac{8}{1 , 5} = 5,33\)
  • Đơn vị 2: \(\frac{5}{3} \approx 1,67\)
  • Đơn vị 3: \(\frac{4}{1} = 4\)

Tổng hệ số: \(5,33 + 1,67 + 4 = 11\).

Vì tổng chi phí là \(340\) triệu đồng, mỗi đơn vị hệ số 1 sẽ trả \(\frac{340}{11} \approx 30,94\) triệu đồng.

Vậy:

  • Đơn vị 1 trả: \(5,33 \times 30,94 \approx 164,85\) triệu đồng
  • Đơn vị 2 trả: \(1,67 \times 30,94 \approx 51,52\) triệu đồng
  • Đơn vị 3 trả: \(4 \times 30,94 \approx 123,64\) triệu đồng.
13 giờ trước (8:37)

Đề tóm tắt:

  • Tổng chi phí xây cầu: 340 triệu.
  • Đơn vị 1: 8 xe, cách 1,5 km.
  • Đơn vị 2: 5 xe, cách 3 km.
  • Đơn vị 3: 4 xe, cách 1 km.
  • Số tiền mỗi đơn vị đóng tỉ lệ thuận với số xetỉ lệ nghịch với khoảng cách.

Bước 1: Xác định "trọng số" của từng đơn vị

Công thức:

\(S \overset{ˊ}{\hat{o}} \&\text{nbsp}; t i \overset{ˋ}{\hat{e}} n \propto \frac{S \overset{ˊ}{\hat{o}} \&\text{nbsp}; x e}{K h o ả n g \&\text{nbsp}; c \overset{ˊ}{a} c h}\)

  • Đơn vị 1: \(\frac{8}{1 , 5} = \frac{16}{3} \approx 5 , 33\).
  • Đơn vị 2: \(\frac{5}{3} \approx 1 , 67\).
  • Đơn vị 3: \(\frac{4}{1} = 4\).

Bước 2: Tổng hệ số

\(\frac{16}{3} + \frac{5}{3} + 4 = \frac{16 + 5}{3} + 4 = 7 + 4 = 11.\)


Bước 3: Phân chia số tiền

Tổng 340 triệu ứng với 11 phần.
→ Mỗi phần:

\(\frac{340}{11} \approx 30 , 91 \&\text{nbsp};\text{tri}ệ\text{u} .\)

  • Đơn vị 1: \(\frac{16}{3} \times 30 , 91 \approx 164 , 85 \&\text{nbsp};\text{tri}ệ\text{u}\).
  • Đơn vị 2: \(\frac{5}{3} \times 30 , 91 \approx 51 , 52 \&\text{nbsp};\text{tri}ệ\text{u}\).
  • Đơn vị 3: \(4 \times 30 , 91 \approx 123 , 64 \&\text{nbsp};\text{tri}ệ\text{u}\).

✅ Kết quả:

  • Đơn vị 1: khoảng 164,85 triệu đồng.
  • Đơn vị 2: khoảng 51,52 triệu đồng.
  • Đơn vị 3: khoảng 123,64 triệu đồng.

(Tổng đúng 340 triệu đồng).

Ta có: \(x+120^0=180^0\) (hai góc kề bù)

=>\(x=180^0-120^0=60^0\)

Ta có: x=y (hai góc đối đỉnh)

\(x=60^0\)

nên \(y=60^0\)

Ta có: \(z+60^0=180^0\) (hai góc kề bù)

=>\(z=180^0-60^0=120^0\)

13 tháng 8

x = 60\(^0\) (hai góc đồng vị)

x = y = 60\(^0\) (hai góc đối đỉnh)

z = 120\(^0\) (slt)

t = 60\(^0\) (hai góc đối đỉnh)



Gọi BM là tia đối của tia By

Ta có: \(\hat{ABy}+\hat{ABM}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=90^0-60^0=30^0\)

Ta có: \(\hat{xAm}=\hat{ABM}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị đồng vị

nên Ax//BM

=>Ax//By

Ta có: \(\hat{CBM}+\hat{BCz}=30^0+150^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên By//Cz

Ta có: Ax//By

By//Cz

Do đó: Ax//By//Cz

Bài 4: Gọi BM là tia đối của tia Bb

Ta có: \(\hat{ABM}+\hat{ABb}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=80^0-60^0=20^0\)

ta có: \(\hat{ABM}+\hat{A}=60^0+120^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên a//b

Ta có: \(\hat{CBM}+\hat{C}=20^0+160^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên b//c

Ta có: a//b

b//c

Do đó: a//c

Bài 3:

Ta có: \(\hat{A_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên a//b

Ta có: \(\hat{C_1}=\hat{C_2}\) (hai góc đối đỉnh)

\(\hat{C_2}=110^0\)

nên \(\hat{C_1}=110^0\)

ta có: \(\hat{C_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên b//c

Ta có: a//b

b//c

Do đó: a//c

1: Các cặp góc so le trong là \(\hat{A_4};\hat{B_2}\) ; \(\hat{A_3};\hat{B_1}\)

Các cặp góc đồng vị là \(\hat{A_1};\hat{B_1}\) ; \(\hat{A_2};\hat{B_2}\) ; \(\hat{A_4};\hat{B_4}\) ; \(\hat{A_3};\hat{B_3}\)

Các cặp góc trong cùng phía là: \(\hat{A_4};\hat{B_1}\) ; \(\hat{A_3};\hat{B_2}\)

2: Ta có: \(\hat{A_2}+\hat{A_3}=180^0\) (hai góc kề bù)

=>\(\hat{A_3}=180^0-60^0=120^0\)

Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)

\(\hat{A_2}=60^0\)

nên \(\hat{A_4}=60^0\)

Ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)

\(\hat{A_3}=120^0\)

nên \(\hat{A_1}=120^0\)

Ta có: \(\hat{B_2}+\hat{B_3}=180^0\) (hai góc kề bù)

=>\(\hat{B_3}=180^0-60^0=120^0\)

ta có: \(\hat{B_1}=\hat{B_3}\) (hai góc đối đỉnh)

\(\hat{B_3}=120^0\)

nên \(\hat{B_1}=120^0\)

ta có: \(\hat{B_2}=\hat{B_4}\) (hai góc đối đỉnh)

\(\hat{B_2}=60^0\)

nên \(\hat{B_4}=60^0\)

13 giờ trước (8:39)

Đề:

  • Người A và B có số táo bằng nhau, gọi là \(n\) quả mỗi người.
  • Giá dự kiến:
    • A bán \(10000 / 3\) quả (≈ 3333 đ/quả).
    • B bán \(10000 / 2\) quả (5000 đ/quả).
  • Thực tế: B gộp chung, bán \(20000 / 5\) quả (4000 đ/quả).
  • Sau khi bán hết, đếm tiền thì thiếu 15000 đ so với dự kiến.
  • Hỏi số tiền của B thực thu nhiều hơn A bao nhiêu?

Bước 1: Tính tiền dự kiến nếu bán riêng

  • A dự kiến:
    \(T_{A} = \frac{10000}{3} \cdot n = \frac{10000 n}{3} .\)
  • B dự kiến:
    \(T_{B} = \frac{10000}{2} \cdot n = 5000 n .\)
  • Tổng dự kiến:
    \(T = \frac{10000 n}{3} + 5000 n .\)

Bước 2: Tính tiền thực tế khi gộp bán

  • Tổng số táo: \(2 n\).
  • Giá bán: \(20000 / 5 = 4000\) đ/quả.
  • Tổng tiền thu được:
    \(T^{'} = 4000 \cdot 2 n = 8000 n .\)

Bước 3: Lập phương trình “thiếu 15000 đ”

\(T - T^{'} = 15000.\)

Thay vào:

\(\left(\right. \frac{10000 n}{3} + 5000 n \left.\right) - 8000 n = 15000.\) \(\frac{10000 n}{3} - 3000 n = 15000.\) \(\frac{10000 n - 9000 n}{3} = 15000.\) \(\frac{1000 n}{3} = 15000 \Rightarrow n = 45.\)


Bước 4: Tính tiền của A và B trong thực tế

  • A có 45 quả. Bán chung giá 4000 đ/quả →
    \(T_{A}^{'} = 45 \cdot 4000 = 180000\).
  • B cũng 45 quả →
    \(T_{B}^{'} = 45 \cdot 4000 = 180000\).

Bước 5: So sánh

  • Dự kiến:
    • A: \(\frac{10000}{3} \cdot 45 = 150000\).
    • B: \(5000 \cdot 45 = 225000\).
  • Thực tế:
    • A: 180000.
    • B: 180000.

→ Người A lãi thêm \(30000\) so với dự kiến.
→ Người B mất đi \(45000\) so với dự kiến.

→ So sánh A và B trong thực tế:

\(180000 - 180000 = 0.\)


✅ Kết quả:

Trong thực tế, số tiền của B không nhiều hơn Ahai người thu bằng nhau.

Nhưng vì đề hỏi “B thu ít hơn so với dự kiến bao nhiêu?” thì ta có: người B thu ít hơn người A 0 đồng, nhưng so với dự kiến thì B mất 45.000 đồng còn A được lợi 30.000 đồng.

14 tháng 8

Bài giải

Gọi số táo của mỗi người là n quả.

Dự kiến ban đầu:

  • Người A bán 10000 đồng/3 quả → mỗi quả 10000/3 đồng. Tổng tiền dự kiến của A: n × 10000/3
  • Người B bán 10000 đồng/2 quả → mỗi quả 5000 đồng. Tổng tiền dự kiến của B: n × 5000

Tổng tiền dự kiến: n × (10000/3 + 5000) = n × (10000/3 + 15000/3) = n × 25000/3

Người B bán chung cả 2 loại táo với giá 20000/5 quả = 4000 đồng/quả.
Tổng số táo là 2n, bán hết được 2n × 4000 = 8000n đồng.

Thiếu 15000 đồng so với dự kiến:
8000n = n × 25000/3 - 15000
Nhân 3: 24000n = 25000n - 45000 → 1000n = 45000 → n = 45

Tiền thực tế: 8000 × 45 = 360000 đồng
Giá bán thực tế mỗi quả là 4000 đồng, nên số tiền của mỗi người được chia theo số quả họ góp:

  • A góp 45 quả → thực tế thu 45 × 4000 = 180000 đồng
  • B góp 45 quả → thực tế thu 180000 đồng

Chênh lệch so với dự kiến ban đầu:

  • A dự kiến: 45 × 10000/3 = 150000 đồng → thực tế 180000, lãi hơn 30000 đồng
  • B dự kiến: 45 × 5000 = 225000 đồng → thực tế 180000, ít hơn 45000 đồng

Số tiền B thu ít hơn A: 180000 - 180000 = 0 đồng (nhưng so với dự kiến thì B ít hơn A 75000 đồng)

Đáp án: Người B thu ít hơn người A (so với dự kiến) là 75000 đồng.

Cho mình xin 1 tick với ạ

a: Ta có: \(\hat{A_2}+\hat{A_1}=180^0\) (hai góc kề bù)

=>\(\hat{A_2}=180^0-75^0=105^0\)

ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)

\(\hat{A_1}=75^0\)

nên \(\hat{A_3}=75^0\)

Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)

\(\hat{A_2}=105^0\)

nên \(\hat{A_4}=105^0\)

Ta có: \(\hat{B_3}+\hat{B_4}=180^0\) (hai góc kề bù)

=>\(\hat{B_4}=180^0-120^0=60^0\)

ta có: \(\hat{B_3}=\hat{B_1}\) (hai góc đối đỉnh)

\(\hat{B_3}=120^0\)

nên \(\hat{B_1}=120^0\)

Ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)

\(\hat{B_4}=60^0\)

nên \(\hat{B_2}=60^0\)

b: Ta có: \(\hat{xEF}=90^0\)

=>xx'⊥zz' tại E

=>\(\hat{xEz}=\hat{x^{\prime}Ez}=\hat{x^{\prime}EF}=90^0\)

Ta có: \(\hat{yFz^{\prime}}+\hat{y^{\prime}Fz^{\prime}}=180^0\) (hai góc kề bù)

=>\(\hat{yFz^{\prime}}=180^0-110^0=70^0\)

ta có: \(\hat{y^{\prime}Fz^{\prime}}=\hat{yFz}\) (hai góc đối đỉnh)

\(\hat{y^{\prime}Fz^{\prime}}=110^0\)

nên \(\hat{yFz}=110^0\)

Ta có: \(\hat{yFz^{\prime}}=\hat{y^{\prime}Fz}\) (hai góc đối đỉnh)

\(\hat{yFz^{\prime}}=70^0\)

nên \(\hat{y^{\prime}Fz}=70^0\)