
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

Bài 6:
a: \(A=n^2\left(n-1\right)+2n\left(1-n\right)\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-2n\right)=n\left(n-1\right)\left(n-2\right)\)
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên n(n-1)(n-2)⋮3!
=>n(n-1)(n-2)⋮6
=>A⋮6
b: \(M=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+12x-x-1\right)\left(12x^2+8x+3x+2\right)-4\)
\(=\left(12x^2+11x-1\right)\left(12x^2+11x+2\right)-4\)
\(=\left(12x^2+11x\right)^2+2\left(12x^2+11x\right)-\left(12x^2+11x\right)-2-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
Bài 4:
a: \(A=x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\cdot\left(x-y\right)+xy\left(y-x\right)\)
\(=\left(x-y\right)^3-xy\left(x-y\right)\)
Khi x-y=5 và xy=4 thì \(A=5^3-4\cdot5=125-20=105\)
b: \(B=65^2-35^2+83^2-17^2\)
\(=\left(65-35\right)\left(65+35\right)+\left(83-17\right)\left(83+17\right)\)
\(=100\cdot30+100\cdot66=100\cdot96=9600\)
Bài 3:
a: \(4x\cdot\left(x+3\right)-x-3=0\)
=>4x(x+3)-(x+3)=0
=>(x+3)(4x-1)=0
=>\(\left[\begin{array}{l}x+3=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac14\end{array}\right.\)
b: \(x^2+4x=0\)
=>x(x+4)=0
=>\(\left[\begin{array}{l}x=0\\ x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-4\end{array}\right.\)
c: \(9x^2-\left(2x-1\right)^2=0\)
=>\(\left(3x\right)^2-\left(2x-1\right)^2=0\)
=>(3x-2x+1)(3x+2x-1)=0
=>(x+1)(5x-1)=0
=>\(\left[\begin{array}{l}x+1=0\\ 5x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-1\\ x=\frac15\end{array}\right.\)
d: \(\left(x^3-1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1-x^2+5\right)=0\)
=>(x-1)(x+6)=0
=>\(\left[\begin{array}{l}x-1=0\\ x+6=0\end{array}\right.=>\left[\begin{array}{l}x=1\\ x=-6\end{array}\right.\)

Bài 4:
AB//CD
=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)
mà \(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)
nên \(\hat{DAK}=\hat{DKA}\)
=>DA=DK
Ta có: DK+KC=DC
DA+BC=DC
mà DK=DA
nên CK=CB
=>ΔCKB cân tại C
=>\(\hat{CKB}=\hat{CBK}\)
mà \(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)
nên \(\hat{ABK}=\hat{CBK}\)
=>BK là phân giác của góc ABC
Bài 2:
a: Xét ΔDAB có
K,E lần lượt là trung điểm của DA,DB
=>KE là đường trung bình của ΔDAB
=>KE//AB và \(KE=\frac{AB}{2}\)
Xét ΔCAB có
F,G lần lượt là trung điểm của CA,CB
Do đó: FG là đường trung bình của ΔCAB
=>FG//AB và \(FG=\frac{AB}{2}\)
Xét hình thang ABCD có
K,G lần lượt là trung điểm của AD,BC
=>KG là đường trung bình của hình thang ABCD
=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)
Ta có: FG//AB
KG//AB
FG,KG có điểm chung là G
Do đó: F,G,K thẳng hàng(1)
ta có: KE//AB
KG//AB
KE,KG có điểm chung là K
Do đó: K,E,G thẳng hàng(2)
Từ (1),(2) suy ra K,E,F,G thẳng hàng
b: Ta có: KE+EF+FG=KG
=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)
=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

Bài 1:
a; A = \(x^2\) - 4\(x\) + 9
A = \(x^2\) - 4\(x\) + 4 + 5
A = (\(x-2\))\(^2\) + 5
Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\) ⇒ (\(x-2\))\(^2\) + 5 ≥ 5 dấu bằng xảy ra khi \(x-2=0\) ⇒ \(x=2\)
Vậy Amin = 5 khi \(x\) = 2
b; B = \(x^2\) - \(x+1\)
B = (\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14)+\frac34\)
B = (\(x-\frac12\))\(^2\) + \(\frac34\)
Vì (\(x-\frac12\))\(^2\) ≥ 0 ∀ \(x\); ⇒ (\(x-\frac12\))\(^2\) + \(\frac34\) ≥ \(\frac34\)
Dấu = xảy ra khi \(x-\frac12\)= 0 ⇒ \(x\) = \(\frac12\)
Vậy Bmin = \(\frac34\) khi \(x=\frac12\)
Bài 3:
a; A(\(x\)) = \(x^2\) - 4\(x\) + 24
A(\(x\)) = (\(x^2\) - 2.\(x.2\) + \(2^2\)) + 20
A(\(x\)) = (\(x-2\))\(^2\) + 20
Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\);
(\(x-2)^2\) + 20 ≥ 20 ∀ \(x\)
Dấu bằng xảy ra khi \(x-2=0\)
\(x=2\)
Vậy Amin = 20 khi \(x=2\)
b; B(\(x\)) = 2\(x^2\) - 8\(x\) + 1
B(\(x\)) = 2(\(x^2\) - 2.\(x.2\) + 2\(^2\)) - 7
B(\(x\)) = 2(\(x-2\))\(^2\) - 7
(\(x-2\))\(^2\) ≥ 0 ∀ \(x\);
2(\(x-2)^2\) - 7 ≥ -7 ∀ \(x\)
Dấu = xảy ra khi \(x-2\) = 0
\(x=2\)
Bmin = - 7 khi \(x=2\)
c; C(\(x\)) = \(3x^2+x+1\)
C(\(x\)) = 3.(\(x^2\) + \(2.x\).\(\frac16\) + \(\frac{1}{36}\)) + \(\frac{11}{12}\)
C(\(x\)) = 3.(\(x+\) \(\frac16\))\(^2\) + \(\frac{11}{12}\)
(\(x+\frac16\))\(^2\) ≥ 0; (\(x+\frac16\))\(^2\) + \(\frac{11}{12}\) ≥ \(\frac{11}{12}\)
Dấu = xảy ra khi \(x+\frac16=0\) ⇒\(x=-\) \(\frac16\)
Cmin = \(\frac{11}{12}\) khi \(x=-\frac16\)

Bài 7:
a: Xét tứ giác AECF có
D là trung điểm chung của AC và EF
=>AECF là hình bình hành
=>AE//CF và AE=CF
Ta có: AE//CF
=>CF//BE
ta có: AE=CF
AE=BE
Do đó: CF=BE
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
b: BEFC là hình bình hành
=>EF//BC
=>DK//BC
Xét tứ giác BDKC có
BD//KC
BC//DK
Do đó: BDKC là hình bình hành
Bài 9:
a: Ta có: BH⊥AC
CF⊥CA
Do đó: BH//CF
Ta có: CH⊥AB
BF⊥BA
Do đó: CH//BF
Xét tứ giác BHCF có
BH//CF
BF//CH
Do đó: BHCF là hình bình hành
b: Xét tứ giác ABFC có \(\hat{ABF}+\hat{ACF}+\hat{BAC}+\hat{BFC}=360^0\)
=>\(\hat{BAC}+\hat{BFC}=360^0-90^0-90^0=180^0\)

Bài 1:
a: \(A=x^2-4x+9\)
\(=x^2-4x+4+5\)
\(=\left(x-2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 2:
a: \(M=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(P=2x-2x^2-5\)
\(=-2\cdot\left(x^2-x+\frac52\right)\)
\(=-2\left(x^2-x+\frac14+\frac94\right)\)
\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 3:
a: \(A=x^2-4x+24\)
\(=x^2-4x+4+20\)
\(=\left(x-2\right)^2+20\ge20\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=2x^2-8x+1\)
\(=2\left(x^2-4x+\frac12\right)\)
\(=2\left(x^2-4x+4-\frac72\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
c: \(C=3x^2+x-1\)
\(=3\left(x^2+\frac13x-\frac13\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x+\frac16=0\)
=>\(x=-\frac16\)
Bài 4:
a: \(A=-5x^2-4x+1\)
\(=-5\left(x^2+\frac45x-\frac15\right)\)
\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)
\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)
Dấu '=' xảy ra khi \(x+\frac25=0\)
=>\(x=-\frac25\)
b: \(B=-3x^2+x+1\)
\(=-3\left(x^2-\frac13x-\frac13\right)\)
\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x-\frac16=0\)
=>\(x=\frac16\)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
chịu òi
a: ΔABC vuông tại A
=>\(BA^2+CA^2=BC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(\operatorname{cm}\right)\)
Xét ΔBAC có BD là phân giác
nên \(\frac{AD}{AB}=\frac{CD}{BC}\)
=>\(\frac{AD}{9}=\frac{CD}{15}\)
=>\(\frac{AD}{3}=\frac{CD}{5}\)
mà AD+CD=AC=12cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{AD}{3}=\frac{CD}{5}=\frac{AD+CD}{3+5}=\frac{12}{8}=1,5\)
=>\(AD=1,5\cdot3=4,5\left(\operatorname{cm}\right);CD=1,5\cdot5=7,5\left(\operatorname{cm}\right)\)
b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có
\(\hat{ABD}=\hat{EBC}\) (BD là phân giác của góc ABC)
Do đó: ΔABD~ΔEBC
c: Xét ΔDAB vuông tại A và ΔDEC vuông tại E có
\(\hat{ADB}=\hat{EDC}\) (hai góc đối đỉnh)
Do đó: ΔDAB~ΔDEC
=>\(\hat{DBA}=\hat{DCE}\)
mà \(\hat{DBA}=\hat{DBC}\) (BD là phân giác của góc ABC)
nên \(\hat{ECD}=\hat{EBC}\)
Xét ΔECD và ΔEBC có
\(\hat{ECD}=\hat{EBC}\)
\(\hat{CED}\) chung
Do đó: ΔECD~ΔEBC
=>\(\frac{CD}{BC}=\frac{CE}{BE}\)