
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100=10^2\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\left(1\right)\)
Xét ΔABD vuông tại A có AK là đường cao
nên \(BK\cdot BD=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)
c: \(BH\cdot BC=BD\cdot BK\)
=>\(\frac{BH}{BK}=\frac{BD}{BC}\)
=>\(\frac{BH}{BD}=\frac{BK}{BC}\)
Xét ΔBHK và ΔBDC có
\(\frac{BH}{BD}=\frac{BK}{BC}\)
góc HBK chung
Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)


Bài 4:
a: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CBA}=90^0-70^0=20^0\)
Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)
=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-CA^2\)
=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)
b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)
Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)
Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)
Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)
\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)
Bài 5:
Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B
nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)
=>\(\hat{BMA}=39^0-18^0=21^0\)
Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)
=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)
=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)
Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)
=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)
=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)
=>\(\frac{AH}{10}=\sin30=\frac12\)
=>\(AH=\frac{10}{2}=5\left(\operatorname{cm}\right)\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=CA^2\)
=>\(HC^2=10^2-5^2=100-25=75=\left(5\sqrt3\right)^2\)
=>\(HC=5\sqrt3\left(\operatorname{cm}\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=HA^2\)
=>\(HB=\frac{5^2}{5\sqrt3}=\frac{5}{\sqrt3}=\frac{5\sqrt3}{3}\) (cm)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=5^2+\left(\frac{5\sqrt3}{3}\right)^2=25+\frac{25}{3}=\frac{100}{3}\)
=>\(AB=\sqrt{\frac{100}{3}}=\frac{10}{\sqrt3}\) (cm)

15:
a: Gọi giá niêm yết của mỗi cái quạt là x(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là y(đồng)
(ĐIều kiện: x>0; y>0)
Giá của mỗi cái quạt sau khi giảm giá là: \(x\left(1-10\%\right)=0,9x\) (đồng)
Giá của mỗi cái bàn ủi sau khi giảm giá là: \(y\left(1-25\%\right)=0,75\) y(đồng)
Số tiền phải trả nếu mua theo giá niêm yết là 2175000 nên x+y=2175000(1)
Số tiền phải trả nếu mua theo giá đã giảm là 1717500 nên 0,9x+0,75y=1717500(2)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}x+y=2175000\\ 0,9x+0,75y=1717500\end{cases}\Rightarrow\begin{cases}0,9x+0,9y=1957500\\ 0,9x+0,75y=1717500\end{cases}\)
=>\(\begin{cases}0,9x+0,9y-0,9x-0,75y=1957500-1717500=240000\\ x+y=2175000\end{cases}\)
=>\(\begin{cases}0,15y=240000\\ x+y=2175000\end{cases}\Rightarrow\begin{cases}y=1600000\\ x=2175000-1600000=575000\end{cases}\) (nhận)
vậy: giá niêm yết của mỗi cái quạt là 575000(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là 1600000(đồng)
b: Giá của mỗi cái quạt sau khi giảm giá là:
\(575000\cdot0,9=517500\) (đồng)
Giá vốn của mỗi cái quạt là:
\(517500\cdot\frac{100}{115}=450000\) (đồng)
giá của mỗi cái bàn ủi hơi nước sau khi giảm giá là:
\(1600000\cdot75\%=1200000\left(đồng\right)\)
Giá vốn của mỗi cái bàn ủi là:
\(1200000\cdot\frac{100}{120}=1000000\) (đồng)
Bài 12: Gọi số cần tìm có dạng là \(\overline{ab}\)
Tổng của hai chữ số là 12 nên a+b=12
Nếu viết theo thứ tự ngược lại thì số mới lớn hơn số cũ là 18 đơn vị nên ta có:
\(\overline{ba}-\overline{ab}=18\)
=>10b+a-10a-b=18
=>-9a+9b=18
=>a-b=-2
mà a+b=12
nên \(a=\frac{-2+12}{2}=\frac{10}{2}=5;b=12-5=7\)
vậy: Số cần tìm là 57

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\) (2)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
\(AE\cdot AB=AH^2\)
=>\(AE=\frac{AH^2}{AB}\)
\(AF\cdot AC=AH^2\)
=>\(AF=\frac{AH^2}{AC}\)
Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\) (2)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
\(AE\cdot AB=AH^2\)
=>\(AE=\frac{AH^2}{AB}\)
\(AF\cdot AC=AH^2\)
=>\(AF=\frac{AH^2}{AC}\)
Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)
1: Thay m=4 vào phương trình, ta được:
\(x^2-3x-4\cdot4-2=0\)
=>\(x^2-3x-18=0\)
=>(x-6)(x+3)=0
=>\(\left[{}\begin{matrix}x-6=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-3\end{matrix}\right.\)
2: \(\Delta=\left(-3\right)^2-4\cdot1\cdot\left(-4m-2\right)=9+16m+8=16m+17\)
Để phương trình có hai nghiệm thì 16m+17>=0
=>16m>=-17
=>\(m>=-\dfrac{17}{16}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=3\\x_1x_2=\dfrac{c}{a}=-4m-2\end{matrix}\right.\)
\(2x_1^3=x_1^2x_2+3\left(x_2-2x_1\right)\)
=>\(2x_1^3=x_1^2\left(3-x_1\right)+3\left(3-x_1-2x_1\right)\)
=>\(2x_1^3=3x_1^2-x_1^3+9-9x_1\)
=>\(3x_1^3-3x_1^2+9x_1-9=0\)
=>\(\left(x_1-1\right)\left(3x_1^2+9\right)=0\)
=>\(x_1-1=0\)
=>\(x_1=1\)
\(x_2=3-x_1=3-1=2\)
\(x_1x_2=-4m-2\)
=>-4m-2=2
=>-4m=4
=>m=-1(nhận)
Bài 2. Cho phương trình
\(& x^{2} - 3 x - 4 m - 2 = 0 & & (\text{1})\)
với ẩn \(x\) và tham số \(m\).
1) Giải phương trình khi \(m = 4\)
Khi \(m = 4\), (1) trở thành
\(x^{2} - 3 x - 4 \cdot 4 - 2 = x^{2} - 3 x - 18 = 0.\)
Áp dụng công thức nghiệm:
\(x = \frac{3 \pm \sqrt{\left(\right. - 3 \left.\right)^{2} - 4 \cdot 1 \cdot \left(\right. - 18 \left.\right)}}{2} = \frac{3 \pm \sqrt{9 + 72}}{2} = \frac{3 \pm 9}{2} ,\)
suy ra
\(\boxed{x_{1} = 6 , x_{2} = - 3.}\)
2) Tìm \(m\) để nghiệm \(x_{1} , x_{2}\) thỏa
\(2 x_{1}^{3} \textrm{ }\textrm{ } = \textrm{ }\textrm{ } x_{1}^{2} x_{2} \textrm{ }\textrm{ } + \textrm{ }\textrm{ } 3 \textrm{ } \left(\right. x_{2} - 2 x_{1} \left.\right) .\)
Với (1) nói chung, tổng và tích hai nghiệm là
\(S = x_{1} + x_{2} = 3 , P = x_{1} x_{2} = - 4 m - 2.\)
Ta đặt \(x_{2} = 3 - x_{1}\) rồi thế vào đẳng thức cần tìm:
\(2 x_{1}^{3} = x_{1}^{2} \left(\right. 3 - x_{1} \left.\right) \textrm{ }\textrm{ } + \textrm{ }\textrm{ } 3 \left(\right. \left(\right. 3 - x_{1} \left.\right) - 2 x_{1} \left.\right) = 3 x_{1}^{2} - x_{1}^{3} + 9 - 9 x_{1} .\)
Chuyển vế:
\(2 x_{1}^{3} + x_{1}^{3} - 3 x_{1}^{2} + 9 x_{1} - 9 = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3 \left(\right. x_{1}^{3} - x_{1}^{2} + 3 x_{1} - 3 \left.\right) = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \left(\right. x_{1} - 1 \left.\right) \left(\right. x_{1}^{2} + 3 \left.\right) = 0.\)
Trong thực, chỉ có \(x_{1} = 1\). Khi đó \(x_{2} = 3 - 1 = 2\), và
\(P = x_{1} x_{2} = 1 \cdot 2 = 2.\)
Nhưng \(P = - 4 m - 2\), nên
\(- 4 m - 2 = 2 \Longrightarrow m = - 1.\)
Vậy phương trình có hai nghiệm thỏa điều kiện đã cho chỉ khi
\(\boxed{m = - 1.}\)