">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2024

b;          \(x\).(\(x\) + 3)2 - 3\(x\) = (\(x\) + 2)3 + 1

    \(x\).(\(x^2\) + 6\(x\) + 9) - 3\(x\) = \(x^3\) + 6\(x^2\) + 12\(x\) + 8 + 1

       \(x^3\) + 6\(x^2\) + 9\(x\) - 3\(x\) = \(x^3\) + 6\(x^2\) + 12\(x\) + 9

       \(x^3\) + 6\(x^2\) + 9\(x\) - 3\(x\) - \(x^3\) - 6\(x^2\) - 12\(x\)  = 9 

      (\(x^3\) - \(x^3\)) + (6\(x^2\) - 6\(x^2\)) +  (9\(x\) - 3\(x\) - 12\(x\))  = 9 

                 0 + 0 - 6\(x\) = 9

                         - 6\(x\) = 9

                              \(x\) = 9 : (-6)

                              \(x\) = \(\dfrac{-3}{2}\)

Vậy \(x=-\dfrac{3}{2}\)

                       

                           

 

15 tháng 5 2024

Câu 1:

a; 7\(x\) - 10 = 4\(x\) + 11

   7\(x\) - 4\(x\) = 10 + 11

     3\(x\)      = 21

       \(x\)       = 21 : 3

      \(x\)        = 7

Vậy \(x=7\)

22 tháng 6 2021

Ps : Bn tự vẽ hình nhé, mk chỉ giải thôi ạ.

a)   Xét \(\Delta ABC\)và \(\Delta HAB\)

\(\widehat{BAC}=\widehat{BHA}=90^O\)

\(\widehat{ABC}chung\)

\(\Rightarrow\Delta ABC~\Delta HBA\)( g - g )

b)  Xét \(\Delta AHD\)và \(\Delta CED\)

\(\widehat{AHD}=\widehat{CED}=90^O\)

\(\widehat{ADH}=\widehat{CDE}\)( đối đỉnh )

\(\Rightarrow\Delta AHD~\Delta CED\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AD}=\frac{CE}{CD}\Rightarrow AH.CD=AD.CE\)

c) Vì H là trung điểm của BD mà \(AH\perp BD\)

=> AH là đường trung trực của BD

\(\Rightarrow AB=AD\)

Mà : \(\frac{AH}{AD}=\frac{CE}{CD}\)

\(\Rightarrow\frac{AH}{AB}=\frac{CE}{CD}\)

Vì \(\Delta ABC~\Delta HBA\Rightarrow\frac{AH}{AB}=\frac{CA}{CB}\)

Do đó : \(\frac{CE}{CD}=\frac{CA}{CB}=\frac{8}{10}=\frac{4}{5}\)

Vì \(\Delta CED\)vuông 

\(\Rightarrow S_{CED}=\frac{CE.ED}{2}\)

\(AB//FK\Rightarrow\widehat{BAH}=\widehat{KFH}\)

                       \(\widehat{AHB}=\widehat{FHK}=90^O\)

                        \(BA=HD\)

\(\Rightarrow\Delta AHB=\Delta FHK\)

\(\Rightarrow HA=HF\)mà \(CH\perp AF\)

=> CH là đường trung trực AF \(\Rightarrow\Delta ACF\)cân tại C

Do đó : D là trọng tâm \(\Delta ACF\)

\(\Rightarrow CD=\frac{2}{3}CH\)

Mà \(\cos ACB=\frac{AC}{BC}=\frac{CH}{CA}=\frac{4}{5}\Rightarrow CH=\frac{32}{5}\Rightarrow CD=\frac{64}{15}\)

\(\Rightarrow\frac{CE}{CD}=\frac{4}{5}\Rightarrow CE=\frac{256}{75}\)

\(ED=\sqrt{CD^2-CE^2}=\frac{64}{25}\)

\(\Rightarrow S_{CED}=\frac{8192}{1875}\)

d)    Vì \(\Delta ACF\)cân tại C  \(\Rightarrow KE//AF\Rightarrow\widehat{EKF}=\widehat{AFK}\)

        Vì  HK là trung tuyến \(\Delta AFK\)\(\Rightarrow\widehat{AFK}=\widehat{HKF}\)

Do đó : \(\widehat{HKF}=\widehat{EKF}\)

=> KD là phân giác \(\widehat{HKE}\)

                                                                                                                                                           # Aeri # 

13 tháng 3 2020

MỌI NGƯỜI GIÚP MIK NHA!

13 tháng 3 2020

ĐỀ ĐÂY Ạ

11 tháng 12 2019

Em ơi thiếu đề rồi. Em kiểm tra lại nhé!

17 tháng 9 2020

cái gì vậy bạn

17 tháng 9 2020

? bài ở đâu

21 tháng 4 2020

ko hieu

4 tháng 8 2018

đề phải đầy đủ chứ bạn......bổ sung đè nha!!!

7 tháng 7 2015

dễ òm

ta lấy: 9-1=8 ; 9-1=8 =>119=88

5-1=4 ; 5-4=1 =>145=41

9-1=8;9-7=2 => 179=82

=>9-1=8 ; 9-6=3 => 169=83

cách làm

24 tháng 2 2017

Ta có: \(n^4+\frac{1}{4}=\frac{4n^4+1}{4}=\frac{\left(4n^4+4n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)}{4}\)

Thế vô A ta được

\(A=\frac{\frac{5.1}{4}.\frac{25.13}{4}.\frac{61.41}{4}...\frac{1741.1625}{4}}{\frac{13.5}{4}.\frac{41.25}{4}.\frac{85.61}{4}...\frac{1861.1741}{4}}=\frac{1}{1861}\)