Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.
a)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).
b)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).
1.
\(u_{n+1}=4u_n+3.4^n\)
\(\Leftrightarrow u_{n+1}-\dfrac{3}{4}\left(n+1\right).4^{n+1}=4\left[u_n-\dfrac{3}{4}n.4^n\right]\)
Đặt \(u_n-\dfrac{3}{4}n.4^n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=2-\dfrac{3}{4}.4=-1\\v_{n+1}=4v_n\end{matrix}\right.\)
\(\Rightarrow v_n=-1.4^{n-1}\)
\(\Rightarrow u_n=\dfrac{3}{4}n.4^n-4^{n-1}=\left(3n-1\right)4^{n-1}\)
2.
\(a_n=\dfrac{a_{n-1}}{2n.a_{n-1}+1}\Rightarrow\dfrac{1}{a_n}=2n+\dfrac{1}{a_{n-1}}\)
\(\Leftrightarrow\dfrac{1}{a_n}-n^2-n=\dfrac{1}{a_{n-1}}-\left(n-1\right)^2-\left(n-1\right)\)
Đặt \(\dfrac{1}{a_n}-n^2-n=b_n\Rightarrow\left\{{}\begin{matrix}b_1=2-1-1=0\\b_n=b_{n-1}=...=b_1=0\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a_n}=n^2+n\Rightarrow a_n=\dfrac{1}{n^2+n}\)
ĐKXĐ: \(-2\le x\le3\)
Đặt \(\sqrt{x+2}+2\sqrt{3-x}=a\Rightarrow4\sqrt{6+x-x^2}-3x=a^2-14\)
Mặt khác \(a^2=\left(\sqrt{x+2}+2\sqrt{3-x}\right)^2\le5\left(x+2+3-x\right)=25\)
\(\Rightarrow a\le5\)
Và \(\sqrt{x+2}+\sqrt{3-x}+\sqrt{3-x}\ge\sqrt{5}+\sqrt{3-x}\ge\sqrt{5}\) \(\Rightarrow a\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le a\le5\)
Phương trình trở thành:
\(a^2-14=ma\Leftrightarrow\frac{a^2-14}{a}=m\) với \(a\in\left[\sqrt{5};5\right]\)
\(f\left(a\right)=\frac{a^2-14}{a}\Rightarrow f'\left(a\right)=\frac{2a^2-a^2+14}{a^2}=\frac{a^2+14}{a^2}>0\)
\(\Rightarrow f\left(a\right)\) đồng biến \(\Rightarrow f\left(\sqrt{5}\right)\le f\left(a\right)\le5\)
\(\Rightarrow-\frac{9\sqrt{5}}{5}\le f\left(a\right)\le\frac{11}{5}\Rightarrow-\frac{9\sqrt{5}}{5}\le m\le\frac{11}{5}\)
Từ đường tròn lượng giác ta thấy trên khoảng \(\left(-\dfrac{3\pi}{2};3\pi\right)\) phương trình \(sinx=k\)
- Có 5 nghiệm khi \(0< k< 1\)
- Có 4 nghiệm khi \(-1< k\le0\)
- Có 2 nghiệm khi \(k=1\)
- Có 2 nghiệm khi \(k=-1\)
Vậy pt đã cho có 9 nghiệm khi
TH1: \(\left\{{}\begin{matrix}0< -3m< 1\\-1< m-2\le0\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}0< m-2< 1\\-1< -3m\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2< m< 3\\0\le m< \dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
A đúng
Từ đường tròn lượng giác ta thấy trên khoảng (−3𝜋2;3𝜋)(−23π;3π) phương trình 𝑠𝑖𝑛𝑥=𝑘sinx=k
- Có 5 nghiệm khi 0<𝑘<10<k<1
- Có 4 nghiệm khi −1<𝑘≤0−1<k≤0
- Có 2 nghiệm khi 𝑘=1k=1
- Có 2 nghiệm khi 𝑘=−1k=−1
Vậy pt đã cho có 9 nghiệm khi
TH1: {0<−3𝑚<1−1<𝑚−2≤0{0<−3m<1−1<m−2≤0 ⇒𝑚∈∅⇒m∈∅
TH2: {0<𝑚−2<1−1<−3𝑚≤0{0<m−2<1−1<−3m≤0 ⇒{2<𝑚<30≤𝑚<13⇒{2<m<30≤m<31 ⇒𝑚∈∅⇒m∈∅
A đúng