">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

đó bạn nè :

Châu Nam CỰC có đặc điểm gì nổi bật

 

26 tháng 4 2022

Câu 1:

a) \(\left(-\dfrac{2}{17}x^3y^5\right).\dfrac{34}{5}x^2y=\left(-\dfrac{2}{17}.\dfrac{34}{5}\right).\left(x^3.x^2\right).\left(y^5.y\right)=-\dfrac{4}{5}x^5y^6\)

 

b) \(7x^2y^4+\dfrac{-1}{5}x^2y^4-3x^2y^4=\left(7+\dfrac{-1}{5}-3\right)x^2y^4=\dfrac{19}{5}x^2y^4\)

Câu 3:

a. \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=\left(2x^3-x^3\right)+x^2+\left(-2x+3x\right)+2\)

\(=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=\left(3x^3-4x^3\right)+\left(-4x^2+5x^2\right)+\left(3x-4x\right)+1\)

\(=-x^3+x^2-x+1\)

b. \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(x^3+x^2+x+2\right)+\left(-x^3+x^2-x+1\right)\)

\(=\left(x^3-x^3\right)+\left(x^2+x^2\right)+\left(x-x\right)+\left(2+1\right)\)

\(=2x^2+3\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=\left(x^3+x^2+x+2\right)-\left(-x^3+x^2-x+1\right)\)

\(=\left(x^3+x^3\right)+\left(x^2-x^2\right)+\left(x+x\right)+\left(2-1\right)\)

\(=2x^3+2x+1\)

c. \(M\left(x\right)=2x^2+3=0\)

\(\Rightarrow2x^3=-3\)

\(\Rightarrow x^2=-\dfrac{3}{2}\)

Mà \(x^2\ge0\Rightarrow x\in\varnothing\)

Vậy \(M\left(x\right)\) không có nghiệm.

Câu 4:

\(P\left(x\right)=ax^2+5x-3\)

\(\Rightarrow P\left(\dfrac{1}{2}\right)=a.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3\)

\(=a.\dfrac{1}{4}+\dfrac{5}{2}-3\)

\(=\dfrac{a}{4}+\dfrac{5-2.3}{2}\)

\(=\dfrac{a}{4}-\dfrac{1}{2}\)

Theo đề ra: \(P\left(x\right)\) có nghiệm là \(\dfrac{1}{2}\)

\(\Rightarrow P\left(\dfrac{1}{2}\right)=0\Leftrightarrow\dfrac{a}{4}-\dfrac{1}{2}=0\)

\(\Rightarrow\dfrac{a}{4}=\dfrac{1}{2}\)

\(\Rightarrow a=\dfrac{4}{2}=2\)

 

25 tháng 1 2024

\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)

Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:

\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)

\(\dfrac{9y^2}{25}-y^2=-4\)

\(-\dfrac{16}{25}y^2=-4\)

\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)

\(y^2=\dfrac{25}{4}\)

\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)

*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)

*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)

Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:

\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)

9 tháng 1

ai biết gì đâu

AH
Akai Haruma
Giáo viên
31 tháng 1 2024

Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$

a.

$x=180^0-80^0-45^0=55^0$

b.

$y=180^0-30^0-90^0=60^0$

c.

$z=180^0-30^0-25^0=125^0$

22 tháng 12 2022

a. Những tỉnh thành phố có ca nhiễm hơn 2800 ca: Nghệ An, Bắc Ninh, Hưng Yên, Lạng Sơn, Quảng Ninh, Hà Nội. 

b. Tỉnh có số ca nhiễm Covid 19 cao nhất là: Hà Nội 

22 tháng 12 2022

a. Những tỉnh thành phố có ca nhiễm hơn 2800 ca: Nghệ An, Bắc Ninh, Hưng Yên, Lạng Sơn, Quảng Ninh, Hà Nội. 

b. Tỉnh có số ca nhiễm Covid 19 cao nhất là: Hà Nội 

\(a)\hept{\begin{cases}\text{Ta có:}\widehat{A_4}=\widehat{B_2}=110^0\\\text{Mà chúng so le trong}\end{cases}}\)

\(\Rightarrow a//b\)

\(b)\hept{\begin{cases}\text{Ta có:}c\perp a\left(gt\right)\\\text{Mà }a//b\left(cmt\right)\end{cases}}\)

\(\Rightarrow c\perp b\)

\(c)\text{Ta có:}\widehat{B_1}+\widehat{B_2}=180^0\left(\text{kề bù}\right)\)

\(\Rightarrow\widehat{B_1}=180^0-\widehat{B_2}\)

\(\Rightarrow\widehat{B_1}=180^0-110^0=70^0\)

\(\text{Ta có:}\widehat{B_1}=\widehat{B_3}=70^0\left(\text{đối đỉnh}\right)\)

\(\text{Ta có:}\widehat{B_3}=\widehat{C_3}\left(\text{Đồng vị}\right)\)

\(\Rightarrow\widehat{B_3}=\widehat{C_3}=70^0\)

16 tháng 6 2022

a) Ta có: {ˆA4=110ˆB2=110ˆA4=ˆB2=110{A4^=110∘B2^=110∘⇒A4^=B2^=110∘.

Mà hai góc ờ vị trí so le trong  a//ba//b.

b) Ta có: {caa//bcb{c⊥aa//b⇒c⊥b

c) Vì a//bˆA4+ˆB1=180a//b⇒A4^+B1^=180∘

Mà hai góc ở vị trí trong cùng phía ˆB1=180ˆA4=70⇒B1^=180∘−A4^=70∘.

Vì bcb⊥cece⊥c và b//eb//e

ˆB2=ˆC2=110⇒B2^=C2^=110∘ (hai góc ở vị trí đồng vị)

Ta có ˆC2C2^ và ˆC3C3^ là hai góc kề bù ˆC2+ˆC3=180⇒C2^+C3^=180∘

ˆC3=180ˆC2=70⇒C3^=180∘−C2^=70∘.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

22 tháng 12 2022

Xét ∆ABC và ∆DBC có: 

AB = BD 

Góc ABC = góc CBD 

Góc BAC = góc BDC 

=> ∆ABC = ∆DBC

22 tháng 12 2022

xét ΔABC và ΔDBC, ta có :

góc A = góc D (gt)

BC là cạnh chung

góc ABC = góc DBC

=> ΔABC = ΔDBC, (g.c.g)