Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2\left(\sqrt{x+4}-3\right)-4\left(\sqrt{2x-6}-2\right)-x+5=0\)
\(\Leftrightarrow2.\frac{x+4-9}{\sqrt{x+4}+3}-4.\frac{2x-6-4}{\sqrt{2x-6}+2}-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{x+4}+3}-\frac{8}{\sqrt{2x-6}+2}-1\right)=0\)
Có: \(x\ge3\left(ĐK\right)\Rightarrow2<\sqrt{x+4}+3\Rightarrow\frac{2}{\sqrt{x+4}+3}-1<0\)
\(\Rightarrow\frac{2}{\sqrt{x+4}+3}-\frac{8}{\sqrt{2x-6}+2}-1<0\)
Vậy pt có nghiệm là x=5
Nếu x+y+z=1 sẽ đúng hơn
Với x,y là số dương bạn dễ dàng chứng minh: (x+y)2 \(\ge\) 4xy
Tương tự vậy, ta có : (x+y+z)2 =[(x+y)+z]2 \(\ge\) 4(x+y)z
\(\Rightarrow\) 1 \(\ge\) 4(x+y)z (x+y+z=1)
\(\Rightarrow\) x+y \(\ge\) 4(x+y)2 z
Mà (x+y)2 \(\ge\) 4xy (cmt)
\(\Rightarrow\) x+y \(\ge\) 4.4xyz \(\ge\) 16xyz
Dấu "=" xảy ra khi x+y+z=1 , x+y=z và x=y
\(\Leftrightarrow\) x+y = z = \(\frac{1}{2}\) và x=y
\(\Leftrightarrow\) x=y=\(\frac{1}{4}\) và z=\(\frac{1}{2}\)
f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0
ta xét Th (x^3-4x^2-2x-15)/(x^2+x+1)=0
\(\Leftrightarrow\frac{x^3-4x^2-2x-15}{x^2+x+1}=\frac{\left(x-5\right)\left(x^2+x+3\right)}{x^2+x+1}\Rightarrow x=5\)
x2+x+3=0
12-4(1.3=-11
=>pt ko có nghiệm thực
=>x=5 vì (x^3-4x^2-2x-15)/(x^2+x+1)<0
=>\(x\in\left\{-\infty;5\right\}\)