a, Ta có:
\(\left\{{}\begin{matrix}AC\perp AB\\MN\perp AB\end{matrix}\right.\)( do MNPA là hình chữ nhật )
\(\Rightarrow AC//MN\)
\(\Rightarrow\widehat{MNB}=\widehat{PCN}\)( so le trong )
Xét \(\Delta MNB\)và \(\Delta PCN\)có:
\(\widehat{BMN}=\widehat{NPC}=90^o\)(gt)
\(\widehat{MNB}=\widehat{PCN}\)(chứng minh trên)
Suy ra : \(\Delta MNB\)ᔕ \(\Delta PCN\)( g.g )
\(\Rightarrow\dfrac{MN}{PC}=\dfrac{MB}{PN}\Rightarrow\dfrac{MN}{3}=\dfrac{4}{PN}\)
\(\Rightarrow MN.PN=12\)hay \(S_{ABC}=12\left(đvdt\right)\)
b, Ta có:
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}\left(4+MA\right)\left(AP+3\right)\)
\(=\dfrac{1}{2}\left(12+MA.AP+3MA+4AP\right)=\dfrac{1}{2}\left(24+3MA+4AP\right)\)( do \(MA.AP=12\))
\(=12+\dfrac{3MA}{2}+2AP=12+\dfrac{3MA}{2}+2.\dfrac{12}{MA}\)
Áp dụng BDT Cô - si cho 2 số \(\dfrac{3MA}{2};\dfrac{24}{MA}\)không âm ta có:
\(\dfrac{3MA}{2}+\dfrac{24}{MA}\ge2\sqrt{\dfrac{3MA}{2}.\dfrac{24}{MA}}=2.\sqrt{36}=12\)
Khi đó:; \(S_{ABC}\ge12+12=24\)
Vậy \(S_{ABCmin}=24\Leftrightarrow\dfrac{3MA}{2}=\dfrac{24}{MA}\Leftrightarrow MA=4;PC=3\)
\(\Leftrightarrow AB=8;AC=6\)
Bình luận (0)