Pi - ta - go : c2 = a2 + b2
\(\dfrac{c^2\left(iP\right)+C^2x\left(-at\right)-\left(go\right)}{c^2}\)= a2 + b2
Nếu \(\dfrac{a\left(x\right)}{b\left(x\right)}\)= c ( x ) thì là
\(\left\{{}\begin{matrix}a\left(x\right)=b\left(x\right)c\left(x\right)\\b\left(x\right)\ne0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}iPc^2-ac^2t-go\\c^2\ne0\end{matrix}\right.=c^2\left(a^2+b^2\right)\)
\(\left\{{}\begin{matrix}iPc^2-ac^2t-go\\c^2\ne0\end{matrix}\right.=a^2c^2+b^2c^2\)
Nếu \(\int\left(x\right)^n\ne0\) thì là \(\int\left(x\right)\ne0\)
\(\left\{{}\begin{matrix}iPc^2-ac^2t-go=a^2c^2+b^2c^2\\c\ne0\end{matrix}\right.\)