C A B D E M N P Q I F A G H K
+) MB // FG
Mà AB = \(\dfrac{1}{4}\) AF => MB = \(\dfrac{1}{4}\) FG = \(\dfrac{1}{4}\) BC => CM = \(\dfrac{3}{4}\) BC
SACM = \(\dfrac{1}{2}\).h.CM = \(\dfrac{1}{2}\).h.\(\dfrac{3}{4}\) BC = \(\dfrac{3}{4}\) SABC = \(\dfrac{3}{4}\) . 6 = \(\dfrac{9}{2}\)
+) KN // AC
Mà GK = \(\dfrac{2}{3}\) CG (1) => KN = \(\dfrac{2}{3}\) AC
KP // CM (2)
Từ (1) và (2) => KP = \(\dfrac{2}{3}\) CM
SKNP = \(\dfrac{1}{2}\)sin60o.KN.KP = \(\dfrac{1}{2}\)sin60o.\(\dfrac{2}{3}\)AC.\(\dfrac{2}{3}\)CM = \(\dfrac{4}{9}\) SACM = \(\dfrac{4}{9}\).\(\dfrac{9}{2}\) = 2
+) HI // CM
Mà HG = \(\dfrac{1}{3}\) CG (3) => HI = \(\dfrac{1}{3}\) CM
HQ // AC (4)
Từ (3) và (4) => HQ = \(\dfrac{1}{3}\) AC
SHQI = \(\dfrac{1}{2}\)sin60o.HI.HQ = \(\dfrac{1}{2}\)sin60o.\(\dfrac{1}{3}\)CM.\(\dfrac{1}{3}\)AC = \(\dfrac{1}{9}\)SACM = \(\dfrac{1}{9}\).\(\dfrac{9}{2}\) = \(\dfrac{1}{2}\)
=> SACM + SKNP + SHQI = \(\dfrac{9}{2}\) + 2 + \(\dfrac{1}{2}\) = 7.